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Abstract

In this report, we introduce and analyze a new structure on surfaces gener-
alizing the complex structure. To define this so called higher complex structure
we need the punctual Hilbert scheme of the plane which roughly speaking gives
a polynomial curve in each cotangent space. In the case where these curves
are straight lines, we recover the complex structure. We show that the higher
complex structure is locally trivializable by higher diffeomorphisms, a gen-
eralization of usual diffeomorphisms. The global theory gives an interesting
generalization of the classical Teichmiiller space. We hope that this approach

will give a geometric version of higher Teichmiiller theory.
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1 Introduction

Manifolds are the main objects in differential geometry. Because of their richness, it
is often convenient to equip them with some extra structure. The local and global

theory of extra structures often reveal topological properties of the manifold.

Motivation. We are interested in structures related to the complex structure.
A complex structure is a complex atlas. Its global theory gives the notion of the
Teichmiiller space Ts, which describes all complex structures modulo diffeomorphisms
isotopic to the identity.

Poincaré’s uniformization theorem links complex structures on surfaces to ho-
momorphisms from the fundamental group of the surface to PSL(2,R), the auto-
morphism group of the hyperbolic plane. With this, the Teichmiiller space can be
seen as a connected component of the space of representations of the fundamental

group in PSL(2,R) with discrete image:
Ts C Repdiscrete(ﬂ-l(g)v PSL(27 R))

Hitchin describes in [16] an algebraic generalization of the Teichmiiller space in
terms of representations of m1(X) in PSL(n,R). The geometric nature of this gen-
eralization remains mysterious: Does this generalization describe the global theory
of a structure on the surface similar to the complex structure? In this report, we
describe a candidate for a new structure on surfaces generalizing the complex struc-
ture. We hope that this so called higher complex structure will give a geometric

approach to higher Teichmiiller theory.

Outline. The report is structured in three parts.

In the first part in section 2, we will see several viewpoints of the complex
structure on surfaces. Starting with the definition, we analyze the almost com-
plex structure, especially its local and global theory. Then, we discuss Poincaré’s
uniformization theorem and its consequences for the global theory of complex struc-
tures. In a last part, we link to complex projective structures. All this material is
classic. We will see that in preparation for our generalization, you should think of
the complex structure as a given direction in each complexified cotangent space.

In the second part (section 3), we introduce the tool we need for generalizing the
complex structure: the punctual Hilbert scheme of the plane. This scheme can be
variously seen as the set of ideals of C [z, y] of finite codimension, a blowup of the
configuration space Sym”(C?) or the set of commuting matrices admitting a cyclic
vector. Roughly speaking, the punctual Hilbert scheme describes sets of points of the

plane and whenever two or more points coincide, it keeps track of how they collide.



We then analyze the zero-fiber of the Hilbert scheme which corresponds to the case
when all points coincides. In this case, we can simply think of it as a polynomial
curve. This part is also well-known apart from the two last subsections in which we
rediscover Lagrange’s inversion theorem and explore an orthogonal viewpoint.

In the third part (section 4), we define and analyze the higher complex structure.
To gain more flexibility, we will enlarge the group of diffeomorphisms and look at
higher complex structures modulo higher diffeomorphisms isotopic to the identity.
We will show that the local theory is trivial as for the complex structure. The global
theory leads to a geometric generalization of the Teichmiiller space. We will describe
its tangent and cotangent space and compute its dimension. All the material in this
section is new, although the approach was strongly suggested to me by my advisor.

Subsections marked with a star are not important for the global understanding

and are not refered to in subsequent sections.

Prerequisites. The reader is supposed to be familiar with basic facts about dif-
ferential and complex geometry (that’s important), algebraic geometry (if you want
to understand details in section 3) and symplectic geometry (for section 4, we will
recall the definitions). Manuels for these topics are the books of Lee [21], Griffiths
& Harris [13] and McDuff & Salamon [22].

Notations. Throughout the paper, M denotes a smooth manifold and ¥ a con-
nected oriented surface (real dimension 2) of genus g, often required to be at least
2. A complex coordinate on X is denoted by z = x + iy and its conjugate coordinate
on 7% by p.

Other notations: H is the hyperbolic plane, J an almost complex structure, 9 and
0 defined on page 5, i and p,, the Beltrami coefficient and higher Beltrami coeffi-
cients, oc means "proportional to", K = T*(93 is the canonical line bundle, I'(L)
the global sections of some line bundle L, 75, and 7;” the Teichmiiller space and
its geometric generalization, Py, defined on page 12, S(w, z) the Schwarzian deriva-
tive, Hilb™ and Hilbj the punctual Hilbert scheme of the plane and its zero-fiber,
Sym"(C?) the configuration space (page 18), v - n a partition of n (page 25 and
26), ¢, and ¢, defined on page 26 and 27, {.,.} the Poisson bracket (p. 37) and T'f
defined on page 41.

Acknowledgements. I am profoundly thankful to my advisor Vladimir Fock who
introduced me to the subject, shared lots of ideas and intuitions, gave hints and
remarks and who answered so many questions.

I’m also thankful to John Baez and Javier Muniain for their marvelous book Gauge
Fields, Knots and Gravity 3|, the best book I ever read and from which I take

endless motivation for my research.



2 Complex structures on surfaces

In this section we will discuss various viewpoints of a complex structure on a surface,
its main properties and the associated Teichmiiller space. Of course, our presentation

will prepare the reader to the generalization which will follow in section 4.

2.1 Complex structure

Once mathematicians understood the universal and deep properties of complex num-
bers and their surprising appearance in physical theories, it was natural to generalize
most of the mathematical concepts to complex numbers. Thus, it is not surprising
that the fundamental notion in geometry, that of a manifold, was generalized to a

complex manifold.

Definition 1. A complex structure on a manifold M of real dimension 2n is
an atlas with coordinate charts being open subsets of C* such that the transition
functions are holomorphic. A manifold with a complex structure is called a complex

manzifold.

Just as real differential manifolds are modeled on R™, complex manifolds are modeled
on C". Simple examples of complex manifolds are given by open sets of C" or the
complex projective spaces CP"™.

For terminology, a complex manifold of dimension one (i.e. a complex curve) is
called a Riemann surface. Riemann surfaces have been studied intensely which
permitted among others the understanding of multivalued functions like for instance
the complex square root as ramified covering map over C. My favorite reference for
Riemann surfaces is the book of Donaldson [7]. A nice book on complex manifolds
is Kodaira’s book [20].

2.2 Almost complex structure

Adding a supplementary structure on a manifold can basically be done in two ways:
either one adds a geometric object to the manifold or one changes the model space.
Often, there are two notions corresponding to the two approaches and a deep un-
derstanding of the structure involves a link between these two approaches. We will
encounter several examples of this principle: almost complex, hyperbolic and sym-
plectic structure. For all of them, one adds a geometric object to the manifold but
deep theorems (Newlander-Nirenberg, Killing-Hopf and Darboux resp.) give that
they can be modeled on C*, H" and (R?",wy) respectively.



In our case, we have defined a complex manifold by changing the model space.
Keeping only the fact that every tangent space carries a structure of a complex

vector space, one gets the notion of an almost complex structure:

Definition 2. An almost complex structure on a smooth manifold M is an
endomorphism J(m) on T,,M for all points m of M depending smoothly on the
point and satisfying J(m)? = —id.

This definition clearly extends the property i2 = —1. More precisely, a complex
structure on a manifold gives an obvious almost complex structure by pulling back
the multiplication by ¢ on M. An almost complex structure is said to be integrable
if it comes from a complex structure in this way. Note that a manifold with an almost
complex structure has necessarily even dimension by taking the determinant of the
equation J? = —id.

The study of an additional structure on a manifold is always done in three steps:
first one has to understand the structure for one point which often is linear algebra,
then locally in a neighborhood of a point and finally globally. From now on, we
restrict attention to surfaces.

Let’s start with the first step: An almost complex structure J on C is uniquely
determined by the image of 1 which has to be in C —R. Thus, we see that the space
of almost complex structures on C has two connected components both homeomor-
phic to the upper half plane H. These two components are canonically isomorphic
since we can associate an almost complex structure —J to any J. Any almost com-
plex structure gives an orientation (on every tangent space so on the manifold) by
declaring (1,J(1)) to be a direct basis. That’s why we always restrict attention
to oriented surfaces with almost complex structures compatible with the ori-
entation, meaning that the orientation coming from J coincides with the surface
orientation.

For the second step, a miracle happens already discovered, as lots of other mir-

acles, by Carl-Friedrich Gauss.

Theorem 1 (Gauss 1822 (real analytic case), Korn and Lichtenstein 1916). Any

almost complex structure on a surface is integrable, i.e. locally trivialisable.

This theorem is equivalent to the existence of isothermal coordinates, i.e. coor-
dinates such that the metric locally reads g = f(z,y)(z* + y?). A proof of this can
be found in [6].

The theorem does not hold true in higher dimensions. In fact, it is possible
to associate a notion of curvature to an almost complex structure. The famous

theorem of Newlander and Nirenberg asserts that an almost complex structure
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is integrable if and only if its curvature is vanishing. In the case of a real analytic

manifold, this boils down to the Frobenius theorem on integrable distributions.
The third step, the global understanding of a complex structure, leads to the

notion of the Teichmiiller space. Before going there, we need a careful analysis of

the endomorphism J which will be done in terms of the Beltrami coefficient.

2.3 Beltrami coefficient

To study an almost complex structure, we wish to diagonalize the endomorphism
J. Since J? = —id, the characteristic polynomial is given by X2 4 1, so the eigen-
values of J are ¢+ and —i. Thus, we have to complexify the vector space T into
TCY := TM®rC. Note that the complexified tangent space carries a "natural" com-
plex multiplication by ¢ coming from the complexification and has also the almost

complex structure J (extended by C-linearity). We then get the decomposition
T°S =TS @ TO'S
with T3 the eigenspace of J associated to the eigenvalue ¢ and T%'Y to —i.

T

real part T2

0 TR
Fig. 1: Complexified tangent space
Explicitly, we have
Ty = {X —iJX | X € TE} and TS = {X+iJX | X e T}

since for example J(X —iJX) = JX —iJJX =i(X —iJX).
In the case of an almost complex structure .J; coming from a complex chart

z =z +1y, put
1 , = 1 .
0=0,:= 5(895 —10,) and 0 = 0; := 5(835 +10,).

We see that T (resp. T%'Y) is generated by 0 (resp. 9). The differential operator

0 is called Cauchy-Riemann operator.



For any other almost complex structure J, we can express its eigenvectors in
the basis formed by (9,0) of T coming from some fixed complex chart. Say for
instance that an eigenvector for —i is given by x := ad + b0 with a,b € C. Then,
an eigenvector for i is given by Y = @0 + b0 where the complex conjugation comes
from the natural complex structure on 7CX.

Since we are on a surface, the endomorphism .J is uniquely determined by its two
eigenspaces generated by the vectors x and y. We only have to ensure that these
two vectors are linearly independent since their corresponding eigenvalues are not
the same. A direct computation shows that y = ad + b0 is linearly independent to
X = a0 + b0 if and only if aa # bb. In the case where b # 0, we can normalize Y to
X = 0 — pd with p = —a/b € C. This number p is called the Beltrami coefficient.
The condition aa # bb reads pufi # 1. If J = J, then p = 0.

In the first step, we have seen that almost complex structures come in pairs (J
and —J). The Beltrami coefficient of —J is 1/i. We can thus restrict attention to
the case |u| < 1.

An almost complex structure is encoded by the Beltrami coefficient. For the
moment, we just saw an expression in a local chart. To understand the global
nature of ;1 we have to look how it transforms under coordinate changes. Changing

the holomorphic chart z to w given by z +— z(w), the partial derivatives become

—Haa—w and HEa—w ThUS
dw dw dz/dw
62_ 7762 __aﬂ}_ 77_6111 aw— 77810
(e, 2)0. > 00— (2G0T, 2)

where o< simply means that the two vectors are proportional.

Thus,
p(212) > , 0) = (). g

We say that j is of type (-1,1) which means that it is a section of K '@ K where K =
T*19%] denotes the canonical bundle of ¥ and K~' = K* in the Picard group, the
group of line bundles over a Riemann surface with tensor product as composition.
More explicitly, the Beltrami coefficient is an object of the form pu(z, z)dz ® 0, i.e.
a (0,1)-form with values in K:

pe Q2 K)=T(K"®K).

Remark. The variable Z has no geometric meaning. Writing u(z, z) simply indicates

that p is not necessarily holomorphic.



A fundamental principal in algebraic geometry is to understand a space via its
functions defined on it. In this spirit, we define a holomorphic function f (with
respect to the almost complex structure J) by a function satisfying the Beltrami
equation

(0—pd)f=0
which is a generalization of the usual Cauchy-Riemann equation. In the case of the
natural complex structure Jy, the Beltrami coefficient vanishes and one recovers the
Cauchy-Riemann equation.
Conversely, given any holomorphic function f with respect to .J, we can recover the
Beltrami coefficient by the formula
_of

which gives another explanation for the expression u(z,z)dz ® 0.

Remark. Change under general transformation
Under a geneml tmnsformation z — z(w,w) (not necessary holomorphic), we get

5 9w 0. 5— and analogously for %. Thus,

9z dw o
0 0 ow ow\ 0 ow ow\ 0
PERRA G (a— "(Z’Z)a—) oo (a_ — Z@) 90
L0 oA 0
> 9 ?9—‘“ — p(z,2)%2 Ow
Thus,
+ pu(z, z) 2w
p(w, w) = Do 50
This homographic change shows that u does not live in C but rather in CP'. For a
holomorphic transform, we have 2 5 =0= ((99_1; so we recover formula (1) abowve.

2.4 Teichmiiller space

2.4.1 Definition

Now we are ready for the third step, the global understanding of complex structures.

Definition 3. The Teichmdiiller space of an oriented manifold M denoted by Ty
is the set of all complex structures on M compatible with the orientation divided by

all diffeomorphisms isotopic to the identity.



The definition means that in the Teichmiiller space, two complex structures are
considered as the same when one is the pullback by a diffeomorphism isotopic to
the identity of the other. The space of compatible complex structures modulo all
diffeomorphisms is called moduli space. Since this space is singular (for surfaces
it is an orbifold), we prefer considering the Teichmiiller space.

The following famous theorem discovered by Teichmiiller and proved by Ahlfors

and Bers gives the global picture for complex structures on surfaces:

Theorem 2 (Teichmiiller, Ahlfors, Bers). The Teichmiiller space of a surface ¥ of

genus g > 2 is a contractible manifold of complex dimension 3g — 3.

A quite accessible proof of this theorem using the pants decomposition can be found
in [2]. Another proof is given in [10] using laminations. We will give a third proof in
which we show even a little bit more since we will describe the tangent and cotangent
space of Ty, with our analysis of the Beltrami coefficient. In particular we show that
it is a smooth manifold and recover its dimension.

Note that contractibility is easy since a compatible complex structure is given
by the Beltrami coefficient p satisfying |u| < 1. Considering (1 — ) for ¢ € [0, 1]

gives a retraction of the Teichmiiller space to the trivial structure p = 0.

2.4.2 Tangent and cotangent space of Ty

We will give an explicit description of the tangent and cotangent space to the Te-

ichmiiller space and recover in particular its dimension.

Theorem 3. The cotangent space to the Teichmaiiller space at any point J is the set

of all holomorphic quadratic differentials.

Proof. We have seen that the connected component of the set of complex structures

at one point is {y € C | pjx < 1}. Thus, we have
Te={ne K'®K ||ul <1}/Diffy &
where Diffy > denotes all diffeomorphisms isotopic to the identity. Thus,
Ty(Te) = {0p € K" ® K}/T(TY) (2)

where J € Ty, and I'(T'Y) denotes the space of all smooth vector fields on ¥.
All we have to do is to calculate the action of a (real) vector field x = vd + v0
on the Beltrami coefficient p. By theorem 1, there is an atlas in which p = 0.

So we are interested in variations du around g = 0 coming from vector fields.
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Recall that a "variation" is nothing else than the derivative at 0 in some direction:
Op = giu(z + tz0) | -

It is well known that the variation of a vector field V' by another vector field
W is given by Ly V = [W,V] where £ denotes the Lie derivative and [.,.] the Lie
bracket. Thus, the variation of 0 by Y is given by

[, 0] = [v0 +v0,0] = —(Jv)d — (0v)0.

Integrating the vector field x gives a one parameter family indexed by a real number
e. Thus,

85— ()0 + (0)0) x 5 — —2_ 9= 5 — e(50)d
1 —e0v
at first order in €.
Since p — p + edp by definition of du, we get
S = Ov (3)

Notice that for a holomorphic vector field x, we have v = 0 so the complex structure
does not change.

Finally, we get from (2) that
Ty(Ts) ={6p € K '@ K}/ov

For the cotangent space T (7Ts), we get even a simpler form using the fact that the

dual space to K~!' ® K is K? (the pairing being integration over X):

T3(Te) = ({op € K~ @ K}/ov)”
= Ann ({0v})
={te K*| [t(Ov)=0Yv e K '}
={te K*| [v(0t)=0Yv e K '}
={te K*| 0t =0}
= H(%, K?)

the last space being the 0-th (éech) cohomology group which is nothing else than the
set of holomorphic sections of the line bundle K2 over X, i.e. the set of holomorphic

quadratic differentials. O



Let’s recover the dimension of the Teichmiiller space. The Riemann-Roch
formula
dimc(H°(L)) — dime(H' (L)) = deg L — g + 1

where L is a complex line bundle over a Riemann surface ¥ of genus ¢, coupled with
Serre duality
HY (L)~ H (L' ®K),

gives for L = K? that
dime HY(K?) — dime H'(K™') =229 —2) —g+1=3g—3

since deg K? = 2deg K = —2x(X) = 2(2g—2) where x(X) is the Euler characteristic.
For g > 2, we have deg K ! = 2—2¢ < 0 so there is no global non-zero holomorphic
section since the degree is the number of zeros minus the number of poles (with
multiplicity) of any meromorphic section. Thus for g > 2, we get dim¢ H(K?) =
3g — 3.
Therefore

dim¢ Ty, = dime T5(Tx) = dime H(K?) = 3g — 3.

Remark. From formula (3), we see that the tangent space to the Teichmiiller space

is the cokernel of the map
0: 0%, K) — Q¥(2, K).

Remark. Variation around an arbitrary p

Following the previous argument, we compute the variation du induced by a vector
field x = v0 + 10 around an arbitrary .

The infinitesimal variation of O — ud by x is given by

(00 + 09,0 — pd] = (—0v + pdv — Vo — VOR)O + (—0v + pdv)o.
Thus, we get

O — 10+ (1 + (=00 + pdv))0 — (p + (v — pdv + vou + Vo))
o O — (u+ (v — pdv + vou + vVOu + pdv — *ov))od

Thus, noticing a nice factorization, we get

op = (0 — pd + Op)(v + po) (4)

10



2.5 Uniformization theorem

Another way to analyze the global theory of complex structures on surfaces is given
by Poincaré’s famous uniformization theorem which gives the surface as a quo-

tient of the hyperbolic plane.

Theorem 4 (Poincaré, Koebe, 1907). Every simply connected Riemann surface is
biholomorphic to either the Riemann sphere, the complex plane or the hyperbolic

plane.

The original proof of Poincaré can be found in [25]. A historical account which also
gives an idea of the proof is given in [1].

As a corollary, we get that for a surface of genus g > 2, its universal cover
is biholomorphic to the hyperbolic plane. Indeed, the fundamental group of X
acts freely by automorphisms on its universal cover. Any orientation-preserving
automorphism of the sphere has a fixed point and any subgroup of the automorphism
group of the complex plane is abelian. Since 7 (X) is non-abelian for g > 2, the
universal cover has to be the hyperbolic plane. Since the automorphism group of
the hyperbolic plane is PSL(2,R), we get

Corollary. A complex structure on a surface of genus g > 2 is uniquely determined

by a homomorphism of its fundamental group to PSL(2,R) up to conjugacy.

In this point of view, the Teichmiiller space Ty is included in the space of all repre-

sentations of the fundamental group to PSL(2,R) with discrete image:
Ts C Repdiscrete(ﬁl(Z])’ PSL(27 R))

where Rep denotes the set of homomorphisms modulo conjugacy. It is a theorem
that 75 is in fact a connected component of that space (see [12]).

In [16], Hitchin proves that there is a connected component 73 of
1%epdiscrete(ﬂ-1 (2)7 PSL(TL, R))

which generalizes the ordinary Teichmiiller space in an algebraic way. For the mo-
ment, the only geometric meaning of this special component is given by generalizing
the hyperbolic structure, for instance in [14| for n = 4. But there is no interpreta-
tion of 73 as the moduli space of a structure similar to the complex structure. We
hope that our geometric higher Teichmiiller space (see section 4.4), coming from the

global theory of higher complex structures, will give such an interpretation.
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Another spin-off coming from the uniformization theorem is that every Riemann
surface of genus g > 2 admits a hyperbolic structure. A hyperbolic structure on
a manifold is a Riemannian metric with constant negative sectional curvature. The
Killing-Hopf theorem gives that this is equivalent to changing the model space R" to
H" with transition functions in SO(1,n), the group of isometries of the hyperbolic
space. Therefore, every surface with hyperbolic structure has naturally a complex
structure since H C C and SO(1,2) = PSL(2,R) C PSL(2,C) and homographies

are holomorphic.

2.6 Complex projective structure*

In this subsection, we discuss another structure which is related to the global theory
of the complex structure.

Always guided by our principle that a new structure is either an additional
geometric object or a change of the model space, we define a complex projective
structure to be an atlas with charts in CP™ and transition functions in PSL(n +
1,C), the group of automorphisms of the complex projective space. Two complex
projective manifolds M; and M, are isomorphic if there is a diffeomorphism f :
M; — M, that pulls back projective charts of My to projective charts of M;. The
analogue of the Teichmiiller space in this setting, the space of all complex projective
structures modulo all automorphisms isotopic to the identity, is denoted by P,;. A
survey on this structure can be found in [§].

We are interested in the case n = 1. Since CP! is a complex manifold and since
any homography is holomorphic, a projective structure gives a complex structure.
So a projective structure is a finer notion but the equivalence relation is stronger
too. So, once we pass to equivalence classes, the space Py is actually bigger than

the Teichmiiller space:

Theorem 5. There is a surjective map 7w : Ps — T with fiber given by the set of
all holomorphic quadratic differentials HO(X, K?).

We will give a proof following indications of my advisor. This proof is not new, see
for instance [8] (section 3.2).

Let’s give first an idea of the proof. The surjectivity of the map is essentially
given by the uniformization theorem. To compute the inverse image of a point, we
show that a projective structure on a surface is equivalent to a differential operator
of order 2 on the surface modulo some action of functions. Such an operator can be

reduced to the form 92 4+t where the difference of two different ¢’s is a holomorphic
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quadratic differential. Since a complex structure is uniquely determined by the
operator 9, the fiber is given by H°(3, K?).

Proof. Since a projective structure gives a complex structure, the map is well-defined
by taking the quotient by all diffeomorphisms isotopic to the identity.

By the uniformization theorem, a surface X with given complex structure is bi-
holomorphic to a quotient of the hyperbolic plane. For such a quotient, the transition
functions are in SO(1,2) = PSL(2,R) C PSL(2,C). This gives surjectivity.

As announced, we will link projective structures to differential operators of order
2. To any operator D = ad? + bd + ¢ we associate a projective structure in the
following way: We know that locally, the space of solutions to Dy = 0 is a two-
dimensional vector space. Choose a basis (11, 12) and put u := 11 /1)5. The function
u changes by a homography when we change the basis (¢, ¢9). Thus, u can be seen
as a chart to CP! which gives the projective structure.

Notice that the space of all smooth non-vanishing functions O* acts on differential
operators on the left and also on the right. In this case, both actions don’t change
the map u. Indeed, for a smooth non-vanishing function f, Dy = 0 implies (f D)y =
f(D1) = 0 so nothing changes by left action. By right action, define ¢} = %@/}i for
i = 1,2, then Dvy; = 0 implies (Df)y; = D(f¢') = Dy = 0, so v’ = ¢} /) =
(G / o = u.

We will prove that the map from the set of all differential operators of order 2
modulo the right and left action of O* to Px is an isomorphism. For that, we will
show that given any local chart ¢ to an open subset of CP?, there is an unique (up
to O*-action) operator D of order 2 satisfying D¢ = 0 and D(1) = 0. In that case,
we have u = ¢. To do so, we will first give a reduced form for any D using the left
and right action of O*. This reduced form will be 9 + t.

We start with D = a0? + b0 + c¢. Absorbing the coefficient a by a function on
the left, we can assume a = 1. We are looking for a function g such that Dg is

proportional to 9% +t. A direct computation gives

Dg(¢) = D(g) = g0*v + (gb+ 209)0¢ + (gc + 9°g + bdg)

So we choose ¢ such that gb + 209 = 0 which is always possible. We then have
dg = —b/2g and 0%g = g/2(b*/2 — Ob) and thus,

This shows the existence of the reduced form. Uniqueness can be seen directly.

13



Now, we are looking for a solution of D(1) = 0 and D¢ = 0 where D = 9*>+b0+c.

. . . . . . o 02¢
The first equation simply gives ¢ = 0. The second equation gives b = — So
82
p=o-2%
99

and the reduction process gives D = 92 +t with

L 1 /0% 3 (8245)2
2\ 09 22007 )
Twice the term on the right sight is known as the Schwarzian derivative, denoted

by S(¢,2).
Therefore, we see that modulo the action of O*, there is a unique operator D giving

u = ¢ which gives the isomorphism?
Py =2 {D}/O* = {0* + t}.

All what’s left is to understand the global nature of t. So we have to see how ¢

changes under coordinate transforms.

For a coordinate change z — z(w), we have 2 — 922 apnd g—; — (2—3)288—;+d27§%.
Thus,
0? dw , 0*  d*w 0
D=2 1i() s (WL 09Iy
022 1) (dz) ow? * dz? ow 1)

The reduction process gives after some direct computations

tw) = (5(1(2) — 55w, 2))

with S(w, z) the Schwarzian derivative of w with respect to z.

We see that ¢ does not transform as a tensor but just as for the Christoffel sym-
bols in differential geometry, the difference of two t’s transforms like a holomorphic
quadratic differential. So given a complex structure in form of 9, choose a projective
structure which is mapped to the complex structure by 7 (we already know that 7
is surjective). The projective structure corresponds to an operator Dy = 0% + t.
Any other point above the complex structure is of the form 8% +t = Dy + (t — o)
so the fiber of 7 is given by the holomorphic quadratic differentials. O

Remark. The Schwarzian derivative plays an important role in complex and pro-

jective geometry since it is invariant under homographies.

'In fact, we proved only the local version, for the global statement it is necessary to consider
differential operators on non-trivial line bundles.
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2.7 Summary

In this first part, we saw that the complex, almost complex and hyperbolic struc-
tures are equivalent on a surface. Indeed, the theorem of Gauss gives the equivalence
between complex and almost complex structure and Poincaré’s uniformization the-
orem gives the connection to the two other structures. These various viewpoints on
the complex structure explain why multiple generalizations are possible.

The hyperbolic and complex projective structures are "rigid" in the sense that the
group of local structure preserving maps (SO(1,n) and PSL(n+1,C) resp.) is finite-
dimensional. In contrast, the group of local diffeomorphisms preserving a complex
structure is the set of all holomorphic functions with non-vanishing derivative which
is infinite-dimensional. We aim to generalize the complex structure by keeping an
infinite-dimensional group of local structure preserving maps.

We saw that a complex structure on a surface is uniquely determined by giving
a direction 0 in the complexified tangent space TCY for every point z. For our
generalization, we need to replace the tangent by the cotangent space (to gain a
canonical symplectic structure). Since J acts also on the complexified cotangent
space, a complex structure is also given by a direction in 77¢Y. Thus, a complex
structure can be seen as a section of the (pointwise) projectivized cotangent space
P(T*CY). Incidentally, we have for any vector space V that P(V) = Hilb3(V) where
Hilb is the zero-fiber of the punctual Hilbert scheme which leads miraculously to

the next section.
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3 The punctual Hilbert scheme

The Hilbert scheme is the parameter space of all subschemes of an algebraic
variety. In general it is a quite complicated scheme but we are only interested in the
punctual Hilbert scheme of the plane which turns out to be irreducible and smooth.
An excellent account on the punctual Hilbert scheme can be found in Haiman’s
paper [15]. A more technical reference is [24]. We give here several viewpoints of
the punctual Hilbert scheme. For understanding the higher complex structure, it is

sufficient to read the paragraphs 3.1 to 3.4.

3.1 Definition and examples

Take n distinct points in the plane. We can consider these points as an algebraic
variety. Its function space is of dimension n (one value for each point). This gives
a simple example of a scheme of dimension zero. Such a scheme is supported on
points, thus, its function space is finite-dimensional. We define the length of a
zerodimensional scheme to be the dimension of its function space. So the variety of
n distinct points is of length n. We will see that we get more interesting examples
when two or several points collapses into one single point. The moduli space of

zerodimensional subschemes of length n is called the punctual Hilbert scheme:

Definition 4. The punctual Hilbert scheme Hilb"(C?) of length n of the plane

is the set of ideals of C|x,y] of codimension n:
Hilb™(C?) = {I ideal of C [z,y] | dim(C [z, y] /I) = n}.

The subspace of Hilb™(C?) consisting of all ideals supported on 0, i.e. whose as-
sociated algebraic variety is (0,0), is called the zero-fiber of the punctual Hilbert
scheme and is denoted by Hilby(C?).

Let’s work out some examples for small values of n.

For n = 1, the subscheme is necessarily a single point, so Hilb'(C?) = C2.

For n = 2 we already saw the example with two distinct points. Let’s see what
happens when both collapses to one point (following [5]). Suppose that the first
point is at (0,0) and that the second point approaches along a curve (¢,7(t)) with
~(0) = 0, v holomorphic and ¢ € C. The ideal defining both points at time ¢ is given
by

Iy = (z(z —t),z(y — (1), y(x — ), y(y — (1)) -

As t goes to 0, we see that 2%, zy and y? are in Iy but these generate an ideal of

codimension 3. A more thorough analysis will give a fourth element of Iy: For all
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t, we see that z(y — y(t)) — (x — t)y = ty — xy(t) € I;. Writing out the Taylor
expansion of v yields v(t) = 7/(0)t + O(t?) since y(0) = 0 and v holomorphic. Thus,
y—xv'(0) + O(t) € I, for all t. When ¢ goes to 0, we see that y —~/(0)x € I,. This

gives already an ideal of codimension 2. Hence

= (2%, —y +7(0)z).

Notice that only the slope at 0 of + plays a role so we can choose v to be lin-
ear. Therefore we see that the zero-fiber of the Hilbert scheme of length 2 is the
projectivized plane:

Hilbg(C?) = P(C?) = CP*

For n = 3, let’s collapse the points (¢,7(¢)) and (2¢,v(2t)) to (0,0). We will see

that "o
Iy = <x3, —y+7(0)z + %()x2> :

So we could choose v to be a quadratic curve.

Fig. 2: Collapsing points
Some details for the interested reader: the ideal I; at time ¢ is given by

(2(r —t)(2x —2t), 2(x — t)(y — v(2t)),2(y — v(t)) (@ — 2t), 2(y — 7(1))(y — ¥(21)),
y(x —t)(x —2t), y(x —t)(y —v(2t)),y(y — () (@ — 2t), y(y — v(t))(y — v(21)))

So when ¢ goes to zero, we get (x3 z%y, xy* y*) C I, which only gives an ideal of

codimension 6. A refinement shows that the element of I;

r(r—t)(y —v(2t) —y(z —t)(y—(2t)) + %(:v(y —()(z —2t) —y(y —(t)) (= —21))

equals
+(0)

o0 +O))

=y +1'(0)z +
so when ¢ goes to zero, we get that —y + +/(0)x + @ﬁ € Iy.

Remark. If we collapse two points to the origin along two distinct straight lines,

we always get Iy = (x?, vy, y*) which is just one point in the Hilbert scheme. We see
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that to get the generic ideal (which will be specified below), we have to approach the
origin along the same curve of order 2.

Furthermore, it is not possible to collapse first the two points outside the origin
and to collapse them to the origin afterwards. This can give ideals which are too
big. Thus, during the limit process, the distances between all points have to be of the

same order.

These examples strongly suggest to think of Hilbg(C?) as the space of all polynomial
curves of degree n — 1 passing through the origin, or better a generic point of Hilb(
can be seen as the (n — 1)-jet of a curve passing through the origin. This clearly
generalizes the projectivization which we get for n = 2. It can be shown that
collapsing (kt,v(kt)) for k = 1,...,n with y(t) = ayt + agt® + ... + a,t" to (0,0) leads
to the ideal

(2", —y + a1z + aa® + ..+ a2 .

3.2 Blowup of configuration spaces

Another way to look on the punctual Hilbert scheme is its relation to the confi-
guration space Sym”(C?) of (not necessarily distinct) n points of the plane. More
precisely, Sym”™(C?) is defined as the quotient of (C?)" by the permutation group S,
acting by permuting the points. This space is singular since the symmetric group
does not act freely. The Hilbert scheme is a blowup, i.e. a minimal resolution, of
the configuration space. Roughly speaking, when two or more points coincides, the
Hilbert scheme gives an extra information "how they collide".

To any ideal I of codimension n, one can associate its support, i.e. the algebraic
variety defined by I. Taking multiplicities into account (defined by localization), the
support of I consists of n points. Since the order of these points does not matter,

they can be seen as an element of Sym™(C?). This map
7 : Hilb™(C?) — Sym™(C?)

is called the Chow morphism.
It is clear that the Chow morphism is an isomorphism between the set of sub-
schemes without multiplicities and the non-singular points of Sym"(C?). In fact,

one can show that the Chow morphism is birational. Thus, we get

dim Hilb"(C?) = 2n.
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Theorem 6 (Grothendieck, Fogarty). The space Hilb"(C?) is a smooth and irre-

ducible scheme. It is a blowup of the configuration space Sym™(C?).

The original paper of Fogarty is [11]. An accessible proof using combinatorics is
given in Haiman [15]. We just give some ideas and invite the reader to look up the
details in Haiman’s paper. It is interesting to notice that the theorem only holds in
dimension 2 since Hilb"(C™) is neither irreducible nor smooth in general.

Let’s start by giving explicit coordinate charts. This can be done in terms of
Young diagrams. A Young diagram D is a finite subset of N x N such that
whenever (i,j) € D then the rectangle defined by (i, 7) and (0,0) is entirely in D.
Usually, one uses matrix-like notations such that (0,0) is in the upper left corner.

Figure 3 gives examples of Young diagrams (ignoring the entries for the moment).

1|y |y 1|y | 2|
T | xy T | XY

22 |22y 22

3 a3

Fig. 3: Examples of Young diagrams

These diagrams play an important role for visualizing partitions. The set of all
Young diagrams with n squares is in bijection with the partitions of n. Indeed,
given a Young diagram, you can read off the partition by adding the lines. Figure 3
for example gives 8=3+42+2+1 and 8=4-+2-+1+1.

Now, to any Young diagram D, we can associate
Bp ={z'y’ | (j,i) € D}

a subset of the standard basis of the polynomial ring C [z, y] (see again figure 3).
We then set
Up = {I € Hilb"(C?) | Bp spans C[z,y] /I}.

On Up, we can decompose any monomial in the basis Bp:

'y’ = Z cgjxiyj mod [

(jB)eD
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Proposition 1. These Up are open affine subvarieties covering Hilb™. The coor-
dinate ring Oy, 1is generated by the ci with (j,i) € D. That gives the scheme
structure of Hilb".

See [15], proposition 2.1, for the complete proof. We only give a nice proof that the
Up cover all of Hilb".

Proof that all of Hilb™ is covered. Let I be any ideal of codimension n. We want
to show that there is a basis of C [z,y| /I which is of the form Bp for some Young
diagram D. We describe an algorithm giving a basis of this form:

Since 1 ¢ I, we can take 1 as the first basis vector of C[z,y]/I. Then, you run
through [0, n] x [0,n] by columns, starting at (0,0). Every time the vector x'y’ is
linearly independent from those visited before, select it as an element for our basis

(see figure 4).

x | xy
2

x? |27y

.CCS

Fig. 4: Getting a Young diagram

In this way, we get a set of linearly independent vectors. We have to show that there
are n of them and that they form a Young diagram.

Let’s start with the last one. If the set D of selected squares does not form a Young
diagram then there is a selected square (7,4) such that (j,i—1) or (j —1,4) does not
belong to D. If (7,7 — 1) does not belong to D, then it is a linear combination of the
previous squares. Since 2y’ = x(x'"1y’) and since multiplication by x corresponds
to a wertical shift, we get 2'y’ as a linear combination of the previous squares, a
contradiction. The same arguments holds for (7 — 1,4) with a horizontal shift given
by multiplication by .

Finally, if we had not selected n squares, there is a vector v linear independent to D.
Since v is a sum of monomials, there is at least one square (j,7) in N x N which is
linearly independent to D. The argument above shows that the set of squares of the
rectangle defined by (0,0) and (j,4) is a free set. So we have ij < n which implies

i <n and j <n. So the square (j,i) was already selected in our process. O
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This explicit construction by "running in columns" gives a visualization of ideals
of finite codimension. In the discrete plane N x N, there are marked squares (with a
star x, see figure 4), one for each column, corresponding to a relation in I such that

all squares coming before the star in their column form a Young diagram for I.

2
22 | 2%y
| *x
*

Fig. 5: Ideal of the Hilbert scheme

We can ask which relations in the marked squares can be obtained by the process
"running in columns". For example you can obtain (z? zy,y? —az). But it is
impossible to get (23, zy — ay — bx — cx?,y?) with a # 0 because these relations
imply that 2%y € I and then that y + 2z + €22 € I which contradicts the freeness
of (z,2%,y).

First of all, it is sufficient to keep only the first star in each row (when there
are at least two stars in a row, like the second row in figure 5). Indeed, if there
are two neighboring stars in squares (j,7) and (j + 1,4), the relation of z’y/*! in
terms of elements of D obtained by the "running in columns" is the relation of zty’
multiplied by y. Otherwise we would get a relation among elements of D which is a
free set.

When you keep only the first star in each row, the relations you can obtain are
reduced Grébner bases with respect to the monomial order x < y. So we will say a
few words about Grobner bases, see [9] for a detailed account.

A Groébner basis G of an ideal I in a polynomial ring C [z, ..., ,,] with respect
to some monomial order is a generating set of [ such that the set of leading mono-
mials of G generates all leading monomials in I (which form an ideal). Note that
we need a total monomial order to define the leading monomial. A Grébner basis G
is said to be reduced if all leading coefficients in GG are 1 and if every monomial of
a term in G is not in the ideal generated by the leading monomials of the other ele-
ments of G. A fundamental theorem states the ezistence and uniqueness of reduced

Grobner bases.
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The process "running in columns" corresponds to the monomial order x < y
(lexicographic order). The marked squares correspond to the leading monomial of
the relation associated to the square since this relation links the square to the squares

visited before.

Proposition 2. Keeping only the first relation in each row obtained by the process
described in the previous proof, we get a reduced Grobner bases. Conversely, every
reduced Grobner basis generating an ideal of finite codimension can be obtained in

this way.

Proof. For the first part, we have already justified that the first stars in each row
form a generating set. Whenever a polynomial P is in [ its leading monomial cannot
be in D, otherwise we would get a relation in D which is a free set modulo /. By the
definition of the marked squares, we see that the leading monomial of P is divisible
by a leading monomial of a marked square. So we have a Grébner basis. Since we
kept only one star in each row and since a relation links a marked square to squares
in D, it is clear that this Grobner basis is reduced.

The converse follows from the uniqueness of Grébner bases and the first part of the

proof. O

Notice that starting with a generating set of I which does not form a Grébner
basis, we can apply Buchberger’s algorithm to obtain the reduced Grobner basis.
Notice further that running through N x N in rows gives reduced Grobner bases with

respect to the monomial order x > y.

3.3 Commuting matrices

Interestingly, there is a description of the punctual Hilbert scheme in terms of linear
algebra.

For a given ideal I of codimension n, we can consider the multiplication by x
as a linear operator A of the n-dimensional space C[z,y]/I. In the same way,
we can consider the multiplication by y as a linear operator B. Since these two
operations commute, the operators A and B do so too. In addition, the element
1 € Clx,y] /I is a cyclic vector for A and B, meaning that C[z,y] /I is generated
by {A"B™.1 | n,m € N}. We consider A and B as conjugacy classes of matrices.

Proposition 3. The punctual Hilbert scheme Hilb"(C?) is in bijection with conju-

gacy classes of matrices A, B € M,,(C) which commute and admit a cyclic vector.
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Proof. We will give the inverse construction: given two commuting matrices A and

B which admit a cyclic vector, put
I ={PeClz,yl| P(A B) =0}

This defines clearly an ideal. The fact that A and B commute implies that [
is of codimension at most n and the existence of a cyclic vector shows that the
codimension is at least n. It is easy to check that this gives the inverse construction

to the above one. O

We can give a description of the Chow morphism in this picture: Since A and B
commute, it is possible to put them simultaneously in upper triangular form with
diagonal entries (A1, ..., \,) for A and (p, ..., pt,) for B. Then the Chow morphism
7 : Hilb"(C?) — Sym"(C?) is given by

W(A’ B) = (()‘17 Hl)a X (/\nv :U’n)) (5)

To prove this, first suppose that all diagonal entries are different: \; # A; and p; # p;
for all ¢ # j. Then, the matrices A and B are simultaneously diagonalizable. In
that case, the set of polynomials P with P(A, B) = 0 coincides with the set of
polynomials vanishing on the points (A;, i;) for 1 < i < n. Hence, in that case
the Chow morphism is given by the map defined in (5). We conclude by density of
diagonalizable matrices.
Therefore, the zero-fiber Hilbj (C?) = 7(0) is given by nilpotent commuting ma-
trices admitting a cyclic vector.

An application of this viewpoint is the irreducibility of the set of all commuting

nilpotent matrices. See [4] for details.

3.4 Zero-fiber of the Hilbert scheme

In this subsection, we investigate more in detail the zero-fiber of the Hilbert scheme
since it will show up in the definition of the higher complex structure. In particular,
we will give its dimension.

We think of an ideal I in Hilb{ as generated by marked squares around a Young
diagram as shown in figure 5 above. Since [ is supported on 0, no relation has
constant terms. Furthermore, we saw in the previous section that the zero-fiber
corresponds to commuting nilpotent matrices. Thus, we get (z,y)" C I, which
means that zFy"* = 0 in I for K = 0,...,n. This allows to "compute formally"

in Hilby pushing problems in higher and higher orders such that they will disappear
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at order n. We will use this argument several times in the sequel where it will be

clearer what it means.
Theorem 7. The zero-fiber Hilby(C?) is a irreducible scheme of dimension n — 1.

A proof can be found in [4]. Notice that unlike the Hilbert scheme, the zero-fiber is

not smooth. We will give a simple argument to compute the dimension of Hilby.

Proof of the dimension. In the previous section, we saw that Hilb; is the set of
commuting nilpotent matrices A and B admitting a cyclic vector up to conjugacy. A
generic nilpotent matrix can be put into Jordan normal form with only one Jordan
block (the set of these matrices is dense in the set of nilpotent matrices). So to
compute the dimension at a generic point of Hilby, we compute the dimension of
the centralizer of a Jordan block.

A direct computation gives that a matrix B commutes with a Jordan block A iff
it is upper triangular with equal entries in each over-diagonal (line parallel to the
main diagonal situated above it). Since B is nilpotent, there are only zeros on the
diagonal.

Therefore, there are n — 1 degrees of freedom for B. The extra condition that A
and B admit a cyclic vector can only decrease this estimate. Finally we see that the
dimension of Hilby at a generic point is at least n — 1 by giving an explicit example

of an ideal with n — 1 degrees of freedom (see below). O

We can see that the special elements of Hilbg
(2", =y + a1z + asx® + ... + ap_12" )

and
(y", =z + by + boy® + ... + by1y" )

have n — 1 degrees of freedom. In fact, these are the generic ideals in the sense
that the set of all ideals of Hilby which are not of this form have dimension strictly
smaller than n — 1. See [18] (corollary 1) for a proof of that fact. Notice that the
generic ideals corresponds to Young diagrams which are either a single column or a

single row.

Fig. 6: Young diagrams of generic ideals
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3.5 Interlude: Series reversion*

We just mentioned that the generic ideal in Hilby (C?) is of the form
(2", =y + a1z + asx® + ... + ap_12" )

or
(y", =z + by + by’ + ... + byyy" )

or both. So it is natural to ask about the coordinate change in the case when an
ideal can be expressed in both forms, i.e. we are looking for an expression of the b;
in terms of the a;.

The algebraic approach is to insert the equation x = byy + byy? + ... + b,_1y" !

n—1

into y = a1 + axx® + ... + ap_1x and to compare coefficients. One gets for the

first values:

1
b1 —_
ay
by =—=
2 agl),
1 2
by =—(—aia3 + 2a;)
ay
1 9 3
b4 :?(—altm + 5(11(12&3 — 5&2)
1
1
bs :—9(—@?@5 + 6(1%(12@4 + 3a%a§ — 21&1(1%(13 + 14&%)
a

1

The last coefficient seems to be a Catalan number with alternating sign which
triggered my interest (Haiman’s paper is about a generalization of Catalan numbers).
Other striking facts: in the expression of b,, the number of a;’s is n — 1 and the sum
of their indices (with multiplicity) is equal to 2n — 2. That is, the terms are of the

form a’'...a' with

This is equivalent to iy = n—iy —...—i, and iy +2i3+...+(n—1)i, = n—1. The last
equation gives a bijection to partitions of n — 1: for a given partition of n — 1, if i
denotes the number of terms k — 1 in the partition, we get i +2i3+ ...+ (n —1)i,, =
n—1.

Fixing some notation: we will write "v = n'" for "v is a partition of n", v =
(v1, ..., V) with vy the number of k’s in the partition and |v| = 11 + ... + 1v,. In the

Young diagram associated to v, the number v} counts the number of lines of length
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k and |v| is the number of lines.

So we conjecture that

? 1 n—1-|v| 1 v,

_ —1
b = <5 E 0, ay...an (6)
vH(n—1)

with some constants c¢,. Analyzing some numerical data, we further conjecture an

explicit formula for these constants:

2 (=DM 0= 1)

nlv !l v,_q! (™)
For the coefficient in the last term of b,, we have v = (0,n — 1,0...,0), so we get
(—1)"*1%(2::12), a Catalan number with sign. The other coefficients seem to have
no link to Haiman’s ¢, g-Catalan numbers.

The algebraic approach gives a recursive formula with several partitions involved.
This formula can be used to prove the conjectured form (6) but does not give (7)
(at least not easily). I think that one needs a combinatorial interpretation to prove
(7) with this approach. T only succeeded to prove the appearance of the Catalan
numbers with a combinatorial argument.

In order to prove (7) we give an analytic approach. In fact, our problem is that
of the formal reversion of power series, i.e. given y = f(z) = a1x + axz® + ... a
formal power series, we put f~!(y) = bz + byx? + ... the power series expansion of
the inverse function (with respect to composition, not multiplication) and we want
to express at least formally the 0; in terms of the a;. Note that in the case of the
Hilbert scheme, this formal correspondence will be exact since we cut the series
expansions at level n.

Now, we can express the coefficients by derivatives: kla, = f*)(0) and kb, =
(f7H®(0). All we have to do is to express the derivatives of f~! in terms of

derivatives of f. The first derivatives are given by

—1\/ __ 1
(f ) _f, o f_1
-1 //__f”of_1
U =gy
1
Y =g g (0 O o 7 43007 £
(YD = (721 20757 = 15(4"))

where we omitted the "of~!" in the last line. This is quite similar to the formulas
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for the b;. So we conjecture that there are coefficients €, such that

TR

Ao e (f) ATy () (8)
(f) (Z)

Equation (7) and (8) are of course related since kb, = (f~*)*)(0). Thus, from our
conjecture on c,, we get a conjecture on the coefficients £, which we will be able to

prove:
o (DY tn 1y
@2 ()i,

(9)

By induction on v and n, we get by omitting terms of ~!:

1

U = g 2o s
v(n—1)
:(f')li%+1 Y el = ) e ()

vH(n—1)
+Z Z €V1/l(f/)n*|l/‘(f//)1/1.“(f(lJrl))Vlfl(f'(l+2))llz+1+l.“(f(n))yn_l

=1 vH(n-1)

:(f’)%ﬂ Z 6’;(.]”)”_'&'(f”)ﬁl..,(f(”"'l))ﬂn

vkn

where for 7 - n we put

—_

n—

.....

Ep =

(=D"(z[+n—1)! = (I +2)'541
v v, (2!1/1 + (l—i—l)!(ﬁllj— 1))

since 201 + 305 + ... + (n + 1)1, = |P| + n. This is exactly the conjectured form (9).
Therefore, we succeeded to show our four conjectures (6) to (9).

Since the procedure of derivation gives only integers, we get as a corollary that

(=DM(lr|+n —1)!
2D (nl)r=—1y ),

€, = cZforvkn—1
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This can also be seen by a combinatorial argument: if v is a partition of n — 1, then

(n—1)!

[Tw!(Y)"
is an integer because it counts the number of set-theoretic partitions of {1,2,...,n—1}
with v sets of cardinal k for all k£ (imagine any permutation, the first v; elements will
be one-element subsets, the next v, pairs will be the two-element subsets etc.). By
adding one element to each subset, we get a bijection to partitions of {1, ..., n—1+|v|}
with subsets of at least two elements. Now, vy counts the number of (k+ 1)-element

subsets. Thus
(n—1+|v|)!

[Tyl(5+1)lv

More surprising is the fact that also ¢, is an integer which can be easily seen in the

algebraic approach. Hence

(n—1+|v|)!

eNforvkn-—1.

2n
n

) is divisible by n + 1.

These formulas are already known: the reversion of power series is known as La-

This generalizes the property of Catalan numbers, that (

grange’s inversion theorem. The identities (8) and (9) inverses Faa di Bruno’s
formula which give an expression for derivatives of a composition (f o g)™. See
for instance [23], page 411 to 413 for the reversion of power series and [19] for Faa

di Bruno’s formula.

3.6 Orthogonal viewpoint*

In this subsection, we describe a pairing on C [z, y] which will allow a description
of the zero-fiber of the Hilbert scheme as the space of translation-invariant finite-
dimensional vector subspaces of C [z, y]. Every vector space is over C in this part.

Let’s start with the definition of the pairing:

0 0

(P.Q)=Pl5. 5@

z=y=0

where the little point means "applied to".
To see what is going on and why this formula gives a pairing, let’s compute its value

in the standard basis {z"y™ | n,m € N}. We easily get

<:E"ym, x"/ym/> = n!mldy, n 0 ms
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Thus, we see that the pairing is nothing else than the standard inner product of
R [z, y] with weights n!m! for 2"y™ extended by C-bilinearity. This shows in partic-
ular that (.,.) is symmetric and non-degenerate.

Once we have a pairing, we can define the orthogonal complement S+ of any
subset S of Clz,y]. In the case where S is an ideal, its orthogonal has special

properties:

Proposition 4. Let I be an ideal of C[xz,y]. Then I+ is a vector space stable under

derivation and translation.

Proof. For any subset S, it is easy to check that S= is a vector space, using the
C-bilinearity of the pairing. For the invariance, notice the following fundamental

identity:

(PQ,R) = <P,@<%, %>.R> (10)

Thus, if P is an element of I, () any polynomial and R in I+, we get that Q(a%, (%).R

also belongs to I+. Therefore I+ is stable under derivation. Finally, since

0 0
P(z+a,y+b) =explaz— + ba—y)-P(:v, y)

we see that I+ is also invariant under all translations. O

Remark. The invariance of I+ under translation shows that I+ is a subcoalge-
bra of C|x,y] in the following sense: If P € I+, we have AP € I+ @ I+ where
AP(x1,y1, T2, y2) = P(x1 + xo,y1 + y2) is the dual operation to addition.

Now, we can describe explicitly the orthogonal of the zero-fiber of the punctual
Hilbert scheme, defined by taking the orthogonal to every ideal I € Hilby:

Proposition 5. The orthogonal of Hilby(C?) is the space of all vector subspaces of
C [z, y] of dimension n which are invariant under translations. The same holds true

when you replace "translation” by "derivation”.

Proof. The orthogonal complement sends vector spaces of codimension n to vector
spaces of dimension at most n. In fact, if we work in the ring of formal power
series C [[z, y]] then the orthogonal is of dimension exactly n. But for the zero-fiber
Hilby, we cut at level n, that is (z,y)" = 0. Thus, for I € Hilbj(C?), we see that
I+ is of dimension n and by the previous proposition is invariant under transla-
tions and derivations. Conversely, if J is a n-dimensional vector space invariant
under all translations, it is especially invariant under all derivations (=infinitesimal

translations). Then formula (10) shows that J* is an ideal. Finally, since J is
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finite-dimensional, there is an integer m such that (z,y)™ C J* showing that J* is

supported on 0. O

Since (., .) is an inner product, we can identify the Hilbert scheme with the space
of translation-invariant finite-dimensional subspaces.
Let’s give some examples:
For [ = (2%, 2y, y?), we get I+ = Vect(1,x,y).
For Iy = (22, —y + a1x), we get Iy = Vect(1,z + a1y).
For I3 = (23, —y + a1x + axx?), we get I3~ = Vect(1, z + a1y, (x + a19)? + 2asy).

For Iy = (2, —y + ayx + axx? + azx3), we get
I = Vect(1,2 4+ a1y, (x + a19)? + 209y, (v + a1y)® + 6asy(z + a1y) + 6asy)

For the interested reader, we indicate how we computed the complement because it is
another example of the "formal computation" in Hilby. In the case of I3 for instance,
we try to get a term in I3 starting with z°. To be orthogonal to —y + a,z +asz?, we
have to add 2a,y and for z(—y+a;r+asz?) we get 2a;zy. Finally orthogonality with
y(—y + a1z + axx?) gives a term a?y®. Thus, we get 22 + 2a17y + a?y? + 2axy € I3
The process stops because (z,7)* =0 mod I;.

We finish this subsection by an explicit formula for the dual of I,: Adopt-
ing the notations for partitions as in the previous subsection, we get for I,,.; =
(2" —y + a1z + agx® + ... + a,2") that

Proposition 6.

En E : n! 1% Un, |V
ITJL_Jrl :ITJL_ EBVect( maf...an”y‘ |(l' + aly)l)
1=0 vbn— 27T
v1=0

n
n!
=Ji S 7 PN vn V] ,m
I EBVect(Z Z m!yllyzl...yn!al ay?...amy"az™)

m=0 vkn—m

Proof. The formula is true for n = 1, so we use induction. To prove the formula, it
is clear that I;- C I;-,, since I,,41 C I,. So it is sufficient to find a vector orthogonal
to I,,1 which is linear independent to I:-. The candidate P(z,y) for this vector
which is given in the formula above is clearly linear independent from I:- since its
degree in z is higher than that of any element of I - (by induction hypothesis). In
addition, it is annulated by % since it has degree n in x. We will show that

0 0 a"

(_a_y + ala + + an%)f’(x,y) = O
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Since any element of I,,,; is of the form T' = Az" ™ + B(—y + a1z + ... + a,z"), we
get

otip 0 0 "

which shows that P € I;-, ;.
We first compute the derivative of P with respect to x:

n

oP n! 5 1y _
T = 2 T D @+ ay)

=0 vkn—I

v1=0
n—1
(n_1>' v l
=ny_ D, maf---a?y'”‘(wﬂwly)
1=0 vhbn—i—1 2Tt

To finish, let’s compute the y-derivative of P:

n

oP n! v o Il _
T = D Ty ) e+ (e )

=0 vkn—I
v1=0
n—1 n' m m'
— E — E E 7'@;2...@”"3/"’|(x+a1y)l
m)! Uyl v, "
m=0 =0 vFm—I

v1=0
n—1 gn—m
= E a”*maxnfm'P
m=0

where we get from the first to the second line by using the fact that to a partition

v n—I[, we can associate |v| partitions of smaller numbers by forgetting one of the
terms and we get from the second to the third line by using our computation of the

z-derivative of P, iterated several times. O
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4 Higher complex structure

In this final part, we define the higher complex structure and explore its main prop-
erties. For complex structures, we were interested in them up to diffeomorphisms
isotopic to the identity. We will see that for higher complex structures, it is better to
enlarge the group of diffeomorphisms. We then explore the local and global theory

of that new structure.

4.1 Definition and basic properties

In section 2, we saw that a complex structure on a surface ¥ is uniquely given by
a section o of P(T*CY), the (pointwise) projectivized complexified cotangent space,
such that at any point z € ¥, o(z) and 7(z) are linearly independent. In the
previous section, we saw that the projectivization is a special case of the zero-fiber

of the punctual Hilbert scheme for n = 2:
P(T*°Y) = Hilbg (T*CY).

Presented in this manner, it is easy to guess our definition for the higher complex
structure. Note that a chart z on X gives vectors p = % and p = % which can be

seen as linear functionals, i.e. linear coordinates, on 7*CX.

Definition 5. A higher complex structure of order n on a surface X, for short
n-complex structure, is a section of Hilbj(T*®X) such that at each point z we
have I(z) & I(z) = (p, p)-

For n = 2, the extra condition I & I = (p,p) simply reads pajis # 1 which is
exactly what we had for the complex structure (see 2.3). So we recover the complex
structure for n = 2. We chose the name of "higher complex structure" because we
hope to show a strong relation to higher Teichmiiller spaces.

Any higher complex structure gives in particular a complex structure by forget-
ting all p apart from ps. Hence, a higher complex structure gives an orientation on
the surface. We say that a higher complex structure is compatible if this induced
orientation coincides with the surface orientation.

As for the almost complex structure, we will analyze the n-complex structure in
three steps. We start with the analysis at one point. The condition I & I = (p, p)

gives the form of the ideal at each point:
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Proposition 7. A compatible n-complex structure at any point z is given by an
ideal of the form

I(z) = (p", =P + p2(2, 2)p + oo+ pn(2, 2)p" ) with |po] < 1.

The coefficients u are called higher Beltram: coefficients.

Proof. Let I; be the set of all degree 1 polynomials which appear in an element of
I. Tt is clear that I, is a vector subspace of C? since I is a vector space. We will
show that [; is of dimension 1.

If I, = {0}, then sois [, = {0}. But by I ® 1 = (p,p), we get I ® [} = C>
which is absurd. If I; = C? then I = (p,p) which contradicts the fact that it is of
codimension n > 2. Indeed, take any polynomial P without constant term. Since we
assume I; = C2, we can eliminate the homogenous part of degree 1 of P, introducing
only terms of higher degree. By multiplying elements of I; by p or p, we can also
eliminate all terms of degree 2 in P introducing only terms of degree at least 3 and

so on. Since we have p*p"* =0 mod I for all k, this process will stop and P will

be in I.

Therefore I} = Vect(ap + bp) is of dimension 1. So I; = Vect(ap + bp) and the
condition I @ I = (p,p) is equivalent to aa # bb. Since the n-complex structure
is compatible, we have |us| = |a/b| < 1. In particular, b # 0 which gives [; =
Vect(—p + pap).

Finally, since —p + pop € I, there is a relation of the form p = puop + higher terms
in /. Iterating this equality by replacing it in any p appearing in the higher terms,
we will get an expression of p in terms of monomials in p (this procedure will stop).

Since p" = 0 in I, we get
P = piap+ psp’ + .. 4 pap" ' mod 1.
To give an example, we get for n = 4 and p = ap + bpp that
p = ap + bp(ap + blap + bp)) = ap + abp® + ab®p*.

O

Remark. In the proof, we see that if a n-complex structure given by I(z) is not
compatible, then the conjugated structure I(z) is compatible. Hence like for the
complex structure, we get two connected components in the global theory linked by

complex conjugation.
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The previous proposition shows that at any point, we are given a '"generic" ideal
whose Young diagram as described in 3.2 is just a column. Thus, we can think of a
n-complex structure as a given polynomial curve of order n — 1 on each cotangent
space (or (n — 1)-jet).

Before looking on the local and global theory, we can easily determine the global

nature of the higher Beltrami coefficients. For this, let’s see how they change under

dw 8

1> 5. and similarly

a holomorphic coordinate transform z — z(w). Since p = % >

S _ 9 dw 9
P= 5z a0, we get

(p", =D+ pa(2, 2)p+ oo + pn(z, 2)p" )

dw. & . dod dw , O dwo 0
<(£) (%) 7_5%4‘%,&2(2,2)%—1—...—1—(%) Mn(z’z)(%) >

=G =3+ o )

Thus, we see that for m = 2,....,n we get

_ dz/dw _
fm (W, W) = Wum(Z,Z)-

SO fi, is of type (—m +1,1), i.e. a section of K™™' ® K where K = T*1:0% is the
canonical line bundle. For m = 2, this coincides with our observation in 2.3 on the
global nature of the Beltrami coefficient.

Now, we go to the second step, the local theory. In the next subsection, we will

explain why we have to enlarge our attention from > to the symplectic manifold
T3,

4.2 Higher diffeomorphisms

In the previous section, we saw that the n-complex structure in one point can be
seen as a polynomial curve of degree n — 1 in the complexified cotangent space or
equivalently as a complex-valued polynomial function on the (real) cotangent space.
Thus, it seems clear that we cannot get pus = ... = u, = 0 by a linear coordinate
change. The best we can do is ps = 0 which corresponds to the fact that the almost
complex structure can be trivialized at one point.

We want the higher complex structure to be as close to the complex structure
as possible. In particular we wish to be able to trivialize it at one point. So what
we need are polynomial transformations in the cotangent space. This cannot be
achieved from a transformation on X alone, so we have to consider the whole man-

ifold 7% which carries a natural symplectic structure. Why symplectic geometry?
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Because any function H on a symplectic manifold generates a transformation, so we
hope that this transformation will be polynomial when we choose H polynomial.

So we are entering the realm of symplectic geometry. Recall that a sym-
plectic structure on a manifold is a closed non-degenerate differential 2-form w.
Darboux’s theorem asserts that a symplectic manifold can be modeled over (R", wy)
where wy = dz; A dxy + ... + dxo,_1 A dxs, is the standard symplectic form on R?",
The global theory of symplectic structures is not well-understood yet (especially
there is no analog to theorem 2).

Any cotangent bundle admits a natural symplectic structure coming from the
exterior derivative of the Liouville form. In our case, the symplectic form is simply
given by w = dp A dz + dp A dz. Notice that although written in complexified
coordinates, w lives in the real cotangent space since T*Y = {adz + adz | a € C} C
T*Cy.

A symplectomorphism of a symplectic manifold (M,w) is a diffeomorphism
preserving the symplectic form w. The set of all symplectomorphisms, denoted by
Symp(M) is an infinite-dimensional Lie group. Its Lie algebra is given by the set of
symplectic vector fields where a vector field X is called symplectic if the 1-form
ixw:=w(X,.)is closed. If ixw = dH is exact, we speak of a Hamiltonian vector
field with Hamiltonian H which is nothing else than a smooth function on M. Since

any closed form is locally exact, any symplectic vector field is locally Hamiltonian.

Definition 6. A higher diffeomorphism of a surface 3 is a symplectomorphism
of T*X preserving the zero-section X C T*Y (not necessarily pointwise). The set of
higher diffeomorphisms is denoted by Sympy(T*Y).

We say that a higher diffeomorphism is of order n if it is generated by a sym-
plectic vector field such that around each point, its Hamiltonian H is a homogenous

polynomial of degree n in p and p.

Some explanations seem necessary: For order n = 1, we get the usual diffeomor-
phisms of ¥, linearly extended to T*Y since locally, the vector field dH is constant.
In the usual situation, we have a coordinate z on ¥ which gives a linear coordinate
p on T*X. A higher diffeomorphism distorts this linear coordinate (figure 7).
Further, a higher diffeomorphism generated by a symplectic vector field on T*%
preserves the base iff the symplectic vector field restricted to the zero-section X lives
in TY C TT*Y. Writing down this condition shows that the Hamiltonian giving
locally the symplectic vector field admits a Taylor development in p and p only.
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Fig. 7: Effect of higher diffeomorphisms

Let’s see how a higher diffeomorphism acts on the n-complex structure. First, we

need a general statement on variations of ideals:

Proposition 8. The space of infinitesimal variations of an ideal I in a ring A is

the set of all A-module homomorhpisms from I to A/I.

Proof. Let F': I — A be an additive map such that F'(]) is an ideal. The condition
for being an ideal gives that for all « € A and = € I, there is a z € I with

For an infinitesimal F', we can write F' = id +ef. So we get
ar +eaf(x) =z +cf(2).

So z = ax by taking € = 0 and thus

which shows that f is an A-module homomorphism. Conversely, any such morphism
gives a variation.

Since we do not change [ when F’ stays in /, we have to consider morphisms modulo
I. O

Remark. In our case, we deal with ideals of codimension n of C[x,y] which is an
algebra so ideals are vector spaces. Variations of vector spaces of constant dimension

or codimension are described by the tangent space of a Grassmannian: Around a
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linear subspace L of a vector space V', the tangent space to the Grassmannian at L

is given by all linear transformations from L to V/L.

So to compute the variation of an ideal, all we need is to compute the variation of
its generators modulo 1. These generators are polynomial functions and symplecto-
morphisms act on functions. This gives the action of higher symplectomorphisms on
the n-complex structure. We can explicite even further the infinitesimal variation
by a Hamiltonian H.
Any Hamiltonian H generates a flow on T*X by integrating its associated vector
field Xy := w(dH,.). The variation of a function f along a flow line is given by
df

%:df(XH):{Haf}

where {.,.} := a% A £+ £ AL is the Poisson bracket which is a 2-vector. This

means that
OHOf OHOJOf O0HOf O0HOf

g =298 0707 OR0) 0RO
W =0, "0 00 T op oz 05 0p

So the infinitesimal variation of I(z) under a Hamiltonian H is given by a function
F: I — Clz,y]/I defined by p" — {H,p"} mod I and

_p+u2(zaZ>p+'“+,un(zaz>pnil = {H7 —]54‘,&2(2, 2)p+~'~+un(27 z)pnil} mod [/

If we write out the Taylor expansion of H in p and p, we see that only terms of degree
at most n — 1 will count, so we can assume H to be a sum of higher diffeomorphisms
of order at most n — 1.

In the next section, we will see how to compute this variation and that higher

diffeomorphisms can trivialize locally the n-complex structure.

Remark. It seems that higher diffeomorphisms have a strong link to linear differ-
ential operators on manifolds: usual diffeomorphisms isotopic to the identity are
generated by vector fields which are nothing else than differential operators of order
1. It seems that higher diffeomorphisms isotopic to the identity are generated by lin-
ear differential operators since both symplectic vector fields and differential operators

are given locally by a polynomial.

4.3 Local theory

In this subsection, we are in an open neighborhood of 0 in C. We will prove that
a higher complex structure can locally be trivialized by a higher diffeomorphism,

which means that ps(z,2) = ... = u,(z,2) = 0 in a neighborhood of 0. Before doing
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so, we have to compute the variation of the higher complex structure by a higher

diffeomorphism.

4.3.1 Infinitesimal variation

Let’s start with a small case before giving the general computation. For n = 3, we

have an ideal of the form

I(z) = (p°, =P+ p(z,2)p + p(z, 2)p*)

where = ps is the usual Beltrami coefficient and p = pu3. Since we work locally,
the infinitesimal variation is generated by a real Hamiltonian H of degree at most
2 in p and p. We distinguish two cases:

First case: H(z,z,p,p) = v(z,2)p + 0(z, 2)p is of degree 1
As we have seen at the end of the previous subsection, the infinitesimal variation of
I(z) is determined by {H,—p + pp + pp*} mod I(z). We have

{vp+0p,—p+ pp + pp*} = —(u00 — I0)p + (VI — pdv + VI + dv)p
+(vdp — 2pdv + VIp)p* — 2p0Upp
The appearance of the term pp seems at first annoying but modulo I, we have

pp = pp?. Now, integrating the Hamiltonian up to time € in order to compute the

variation of p and p, we get working modulo I that

—p+pp + pp? = —(1+ e(pdv — 00))p + (p + (v — pdv + VO + dv))p
+(p + e(vdp — 2pOv + 6Op — 2updv))p?
oc —p+ (1 + e(vdpu — pdv + vOp + v — pP*dv + pdv)p
+(p + e(vdp — 2pdv + VIp — 3updv + pdv)p?

Thus, noticing a factorization we get
op = (0 — pd + Op) (v + po)

as we already computed in the remark at the end of subsection 2.4 (equation (4))
and
§p = vdp + vIp + pdv — 2pdOv — 3updv

We see that for a usual diffeomorphism (i.e. of order 1), we get the usual variation

of the complex structure and around p = 0, we have dp = 0 so it remains zero.
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Second case: H = wp? + w'pp + wp? is of degree 2 with w’ € R
We proceed exactly in the same manner as before. First we compute
{wp® + w'pp + @p*, —p + pp + pp”}
which equals
(2w — pdw + w'Op + ow)p? + (W' — pow' + 2wdp + Ow')pp + (0w — pPow)p?

Modulo I, we have pp = up? and p? = pup?. We then get directly dp since degree 1
terms are not affected by H:

§p = (2Qwop — pdw + w'Ou + Ow) + p(w'ou — pdw' + 2wy + ow') + (0w — pdw)
which beautifully factorizes to
§p = (0 — pd +20p) (w + pw' + pw) (11)

A Hamiltonian of degree at least 3 does not change p and p. So we covered all cases.
We see in that example the importance to pass to higher diffeomorphisms: with
a diffeomorphism, we cannot change p as we want but with a Hamiltonian of degree

2 we can. Around p = 0 for example, we get
Sp = Ow

which is quite similar to the formula §u = Qv for a Hamiltonian of degree 1.
We turn now to the general case. Equations (4) and (11) for the variations of

1= e and p = us suggest the following general formula:
Proposition 9. The variation of pry1 under a Hamiltonian of degree k given by
H = wip® + wp1p"1p+ ... + wop® with w, = wy_; for all 1 is given by

Spinsr = (0 — p20 + kOpa) (Wi + powi—1 + [3Wy—o... + p5wo) (12)

In addition, around (ps, ..., ,) = (0, ...,0), we get dpy = 0 for I # k + 1.

Proof. There is no mystery: we repeat the same computation as for n = 3 in the
general case. The hurried reader can skip these computations.

A simplification comes from the fact that we are only interested in the variation of
(g for the moment and that only terms of order at least k are modified. Hence, we

can concentrate on terms of degree exactly k. With this and by noting w_; = 0, we
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first compute

{wip" + Wi PP+ wop®, —P A pap e pp T} =
k

Z PP (B — m)wi—mOpy — 0wy —m 4 (M + 1) Wh—m—10pta + OWg—_p,)

m=0

+ higher terms

Modulo I, we have p'p’ = p/p"™/ + higher terms for all + and j. Integrating the
Hamiltonian up to time ¢ gives modulo higher terms that to the function —p+ psp+

oo+ pp™ s added a term

k
€ Z p5 (k= m)wg_mOps — poOWg—m + (M + 1)Wg_pm—10p2 + OWg—m)P*

m=0
Thus, noticing a factorization, we get

k
Ofg1 = Z 15 (k= m)wi—mOps — po0Wg_m + (M + 1)wg_m_10us + Owi_y,)

m=0

=(0 — p120 + kOpz) (W + prowy—1 + pywg—o + ... + p5wo)
which gives equation (12).
Around ps = ... = p,, = 0, we get easily
k

P —pte Y PO,

m=0
= — p+ep"owy
to order 1. Hence, dp; = 0 for [ # k + 1 around ps = ... = p,, = 0. O

Note that around ps = 0, the higher complex structure is preserved by any holo-
morphic higher diffeomorphism. So the group which locally preserves the structure

is infinite-dimensional.

4.3.2 Local triviality

We are now ready to give the local theory of the higher complex structure:

Theorem 8. The n-complex structure can be locally trivialized, i.e. there is a higher
diffeomorphism which sends the structure to (us(z, 2), ..., in(2,2)) = (0, ..., 0) for all

small z.
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Proof. The proof will be by induction. For n = 2, we already know the result
which is Gauss’ theorem on the existence of isothermal coordinates (theorem 1). So
suppose that the statement is true for n > 2 and we will show it for n + 1.

By induction hypothesis, there is a higher diffeomorphism which makes po(z) =
... = pn(2) = 0 for all z near the origin. We will construct a higher diffeomorphism
generated by a Hamiltonian of degree n giving p,11(z) = 0 for all z near 0. Since a
Hamiltonian of degree n does not affect the u, with & < n (see previous proposition),
we are done.

Let’s try a Hamiltonian of the form

H(Za 2,]9,]3) = wn(za 2’p7p>pn + U_Jn(za Zap7ﬁ>pn
generating a flow ¢,. We denote by pl,,,(z, ) the image of p,41(z,2) by ¢, (note
that ¢, fixes the zero-section pointwise). The variation formula (12) for s = 0 then

reads
d

_,ufz-i-l(za Z) = 5wn(z, Za 07 O)
dt
Thus, the variation does not depend on time. We wish to have

d _ _ _
E(Mfﬂl(’za Z)) = _IU/f’L+01 (Za Z)'

So we have to solve

Owy(z,2,0,0) = —pup (2, 2)

The inversion of the Cauchy-Riemann operator 9 is well-known. We denote its

inverse by T'. Explicitly, we have
1 f(Q) *
T =— | —=d(ANd
1) = 5 [ FELacndc

for any square-integrable function f.

Therefore, on the zero-section we set w,(z,%,0,0) = —Tud_ (2, 2) (since fi,41 is
smooth, it is locally square-integrable). To define it everywhere, we choose a bump
function f3, in our case a function on C? which is 1 in a neighborhood of the origin

and 0 outside a bigger neighborhood of the origin, and we put

wn(2,2,p,0) = =B(p, D) Ttn 1 (2, 2).

So the Hamiltonian is defined everywhere and gives a compactly supported vector
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field which therefore can be integrated for all times. We then get

/'sz—l—l(zv z)=(1- t)ﬂg-u(za Z)
Therefore, at time ¢t = 1, u,, 1 vanishes everywhere. O

Remark. One might wonder how it is possible to change ug(z,z) by a higher dif-
feomorphism which fizes the zero-section pointwise. In fact, the higher Beltrami
coefficients do not only depend on z and Z but also on the "non-linear torsion of p".
That means the following: the chart z gives a linear coordinate py, on the cotangent

space. The py. also depend on the derivatives of p (and p) with respect to py, (and
Plin)-

4.4 Geometric higher Teichmiiller space

In this final subsection, we will discuss the global theory of the n-complex structure.
We will define a generalization of the Teichmiiller space, show that it is a contractible
ball of dimension (n? — 1)(g — 1), where g denotes the genus of the surface, and

describe its tangent and cotangent space.

Definition 7. The space of all compatible n-complex structures modulo higher dif-
feomorphisms isotopic to the identity is called the geometric higher Teichmdiiller

space and denoted by T2

Since a higher diffeomorphism of order 1 is a usual diffeomorphism, we recover for

n = 2 the usual Teichmiiller space:
=T
Our main result of the global theory is

Theorem 9. For a surface > of genus g > 2 the geometric higher Teichmiiller space

A~
n

% is a contractible manifold of complex dimension (n* —1)(g —1). In addition, its

cotangent space at any point p = (Ua, ..., i) is given by
T = D HO(E, K™)
m=2

Proof. Contractibility is quite easy as for the complex structure: given a n-complex

structure (g, ..., i) With |us| < 1, we can retract it via (1—1¢)(uz, ..., itn) to (0, ..., 0).
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To see that it is a manifold, we will examine the infinitesimal variation around
any point. This will also give a description of the tangent and cotangent space, as

for the complex structure. By definition, we have
T3 = {(p2, s i) | i € K™ @ K V'm and o] < 1}/ Sympy(T7%))
The infinitesimal variation around p = (o, ..., i) is then given by

T, T3 = {02, .. Optn) | Ot € K™ @ K V1 } /Ty, (T*5)

where I'symp, (7%X) denotes the symplectic vector fields on 7%X tangent to the zero-
section.

In the previous subsection, we have seen that every n-complex structure is locally
trivializable. So there is an atlas in which (o, ..., i) = g = 0. In addition we have
computed the action of a symplectic vector field on the n-complex structure around
1 = 0. Locally, we can decompose its Hamiltonian into homogenous parts of degree
1 to n — 1. All higher terms do not affect the n-complex structure. By proposition

6 (with us = 0), we get

A

T,u7-2n = {(5:u27 ) 5Mn)}/(5w17 ) gwn*ﬁ

where w,, is a section of K. Thus, the tangent space splits into parts
T, 78 = {ops € K@ K} )ow, & ... ® {opn € K "' @ K} /0w,

To compute the cotangent space, we proceed in the same way as for the complex

structure. We get

({0pm}/Owpn—1)" = Ann(dw,,1)
={tm € K™ | [tmOwy,_1 =0Yw,,_1 € K™ '}
={tm € K™ | [ OtmwWp_1 =0Yw,,_1 € K™}
={t,, € K™ | 0t,, = 0}
=H(3, K™)
Therefore

75 = P HO(S, E™)
m=2

Now, we can compute the dimension of the geometric higher Teichmiiller space
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using the Riemann-Roch formula and Serre duality:
dim HO(Z, K™) = deg K™ — g + 1 + dim HO(S, K1),

First, we have deg K™ = mdeg K = m(2g — 2). For the term dim H°(X%, K—™t1),
which describes the global holomorphic sections of K~™*!1, we have for g > 2 that
deg K~ = (1 — m)(2g9 — 2) < 0. Since the degree is the number of zeros minus

the number of poles for any meromorphic section, there cannot be any non-zero

holomorphic section. Hence, dim H(X, K~™!) = 0 and
dim H°(3, K™) = (2m — 1)(g — 1).

Therefore

dim 73 = dim T; 73 = Y dim HO(K™) = > (2m—1)(g—1) = (n* = 1)(g — 1)
m=2

m=2

O

Remark. We see that as in the case for the complex structure, the tangent space
to the geometric higher Teichmiiller space is the direct sum of the cokernels of the
maps

: Q% K™) — QO K™).

The proof of the previous theorem is not very difficult once the computations
above are done. Even these are straightforward. The same theorem holds also for the
(algebraic) higher Teichmiiller space 73 discussed in section 2.5 which is considered
as a difficult theorem (see [16]). So if we could prove the equivalence between the
geometric and the algebraic higher Teichmiiller space, these properties would get an
easier proof. Furthermore, if both concepts are isomorphic, there would be a natural
action of the mapping class group of the surface on 7. Also there would be some
hope of finding a hyperkihler structure in the neighborhood of the zero-section of
T*T& by the hyperkihler quotient construction described in [17]. In particular, this

would give a Kédhler structure on 7.
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