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Abstra
t

In this report, we introdu
e and analyze a new stru
ture on surfa
es gener-

alizing the 
omplex stru
ture. To de�ne this so 
alled higher 
omplex stru
ture

we need the pun
tual Hilbert s
heme of the plane whi
h roughly speaking gives

a polynomial 
urve in ea
h 
otangent spa
e. In the 
ase where these 
urves

are straight lines, we re
over the 
omplex stru
ture. We show that the higher


omplex stru
ture is lo
ally trivializable by higher di�eomorphisms, a gen-

eralization of usual di�eomorphisms. The global theory gives an interesting

generalization of the 
lassi
al Tei
hmüller spa
e. We hope that this approa
h

will give a geometri
 version of higher Tei
hmüller theory.
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1 Introdu
tion

Manifolds are the main obje
ts in di�erential geometry. Be
ause of their ri
hness, it

is often 
onvenient to equip them with some extra stru
ture. The lo
al and global

theory of extra stru
tures often reveal topologi
al properties of the manifold.

Motivation. We are interested in stru
tures related to the 
omplex stru
ture.

A 
omplex stru
ture is a 
omplex atlas. Its global theory gives the notion of the

Tei
hmüller spa
e TΣ whi
h des
ribes all 
omplex stru
tures modulo di�eomorphisms

isotopi
 to the identity.

Poin
aré's uniformization theorem links 
omplex stru
tures on surfa
es to ho-

momorphisms from the fundamental group of the surfa
e to PSL(2,R), the auto-

morphism group of the hyperboli
 plane. With this, the Tei
hmüller spa
e 
an be

seen as a 
onne
ted 
omponent of the spa
e of representations of the fundamental

group in PSL(2,R) with dis
rete image:

TΣ ⊂ Rep
dis
rete

(π1(Σ), PSL(2,R)).

Hit
hin des
ribes in [16℄ an algebrai
 generalization of the Tei
hmüller spa
e in

terms of representations of π1(Σ) in PSL(n,R). The geometri
 nature of this gen-

eralization remains mysterious: Does this generalization des
ribe the global theory

of a stru
ture on the surfa
e similar to the 
omplex stru
ture? In this report, we

des
ribe a 
andidate for a new stru
ture on surfa
es generalizing the 
omplex stru
-

ture. We hope that this so 
alled higher 
omplex stru
ture will give a geometri


approa
h to higher Tei
hmüller theory.

Outline. The report is stru
tured in three parts.

In the �rst part in se
tion 2, we will see several viewpoints of the 
omplex

stru
ture on surfa
es. Starting with the de�nition, we analyze the almost 
om-

plex stru
ture, espe
ially its lo
al and global theory. Then, we dis
uss Poin
aré's

uniformization theorem and its 
onsequen
es for the global theory of 
omplex stru
-

tures. In a last part, we link to 
omplex proje
tive stru
tures. All this material is


lassi
. We will see that in preparation for our generalization, you should think of

the 
omplex stru
ture as a given dire
tion in ea
h 
omplexi�ed 
otangent spa
e.

In the se
ond part (se
tion 3), we introdu
e the tool we need for generalizing the


omplex stru
ture: the pun
tual Hilbert s
heme of the plane. This s
heme 
an be

variously seen as the set of ideals of C [x, y] of �nite 
odimension, a blowup of the


on�guration spa
e Symn(C2) or the set of 
ommuting matri
es admitting a 
y
li


ve
tor. Roughly speaking, the pun
tual Hilbert s
heme des
ribes sets of points of the

plane and whenever two or more points 
oin
ide, it keeps tra
k of how they 
ollide.
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We then analyze the zero-�ber of the Hilbert s
heme whi
h 
orresponds to the 
ase

when all points 
oin
ides. In this 
ase, we 
an simply think of it as a polynomial


urve. This part is also well-known apart from the two last subse
tions in whi
h we

redis
over Lagrange's inversion theorem and explore an orthogonal viewpoint.

In the third part (se
tion 4), we de�ne and analyze the higher 
omplex stru
ture.

To gain more �exibility, we will enlarge the group of di�eomorphisms and look at

higher 
omplex stru
tures modulo higher di�eomorphisms isotopi
 to the identity.

We will show that the lo
al theory is trivial as for the 
omplex stru
ture. The global

theory leads to a geometri
 generalization of the Tei
hmüller spa
e. We will des
ribe

its tangent and 
otangent spa
e and 
ompute its dimension. All the material in this

se
tion is new, although the approa
h was strongly suggested to me by my advisor.

Subse
tions marked with a star are not important for the global understanding

and are not refered to in subsequent se
tions.

Prerequisites. The reader is supposed to be familiar with basi
 fa
ts about dif-

ferential and 
omplex geometry (that's important), algebrai
 geometry (if you want

to understand details in se
tion 3) and symple
ti
 geometry (for se
tion 4, we will

re
all the de�nitions). Manuels for these topi
s are the books of Lee [21℄, Gri�ths

& Harris [13℄ and M
Du� & Salamon [22℄.

Notations. Throughout the paper, M denotes a smooth manifold and Σ a 
on-

ne
ted oriented surfa
e (real dimension 2) of genus g, often required to be at least

2. A 
omplex 
oordinate on Σ is denoted by z = x+ iy and its 
onjugate 
oordinate

on T ∗Σ by p.

Other notations: H is the hyperboli
 plane, J an almost 
omplex stru
ture, ∂ and

∂̄ de�ned on page 5, µ and µn the Beltrami 
oe�
ient and higher Beltrami 
oe�-


ients, ∝ means "proportional to", K = T ∗(1,0)Σ is the 
anoni
al line bundle, Γ(L)

the global se
tions of some line bundle L, TΣ and T̂ n
Σ the Tei
hmüller spa
e and

its geometri
 generalization, PΣ de�ned on page 12, S(w, z) the S
hwarzian deriva-

tive, Hilbn
and Hilbn

0 the pun
tual Hilbert s
heme of the plane and its zero-�ber,

Symn(C2) the 
on�guration spa
e (page 18), ν ⊢ n a partition of n (page 25 and

26), cν and εν de�ned on page 26 and 27, {., .} the Poisson bra
ket (p. 37) and Tf

de�ned on page 41.

A
knowledgements. I am profoundly thankful to my advisor Vladimir Fo
k who

introdu
ed me to the subje
t, shared lots of ideas and intuitions, gave hints and

remarks and who answered so many questions.

I'm also thankful to John Baez and Javier Muniain for their marvelous book Gauge

Fields, Knots and Gravity [3℄, the best book I ever read and from whi
h I take

endless motivation for my resear
h.

2



2 Complex stru
tures on surfa
es

In this se
tion we will dis
uss various viewpoints of a 
omplex stru
ture on a surfa
e,

its main properties and the asso
iated Tei
hmüller spa
e. Of 
ourse, our presentation

will prepare the reader to the generalization whi
h will follow in se
tion 4.

2.1 Complex stru
ture

On
e mathemati
ians understood the universal and deep properties of 
omplex num-

bers and their surprising appearan
e in physi
al theories, it was natural to generalize

most of the mathemati
al 
on
epts to 
omplex numbers. Thus, it is not surprising

that the fundamental notion in geometry, that of a manifold, was generalized to a


omplex manifold.

De�nition 1. A 
omplex stru
ture on a manifold M of real dimension 2n is

an atlas with 
oordinate 
harts being open subsets of Cn
su
h that the transition

fun
tions are holomorphi
. A manifold with a 
omplex stru
ture is 
alled a 
omplex

manifold.

Just as real di�erential manifolds are modeled on Rn
, 
omplex manifolds are modeled

on C
n
. Simple examples of 
omplex manifolds are given by open sets of C

n
or the


omplex proje
tive spa
es CP n
.

For terminology, a 
omplex manifold of dimension one (i.e. a 
omplex 
urve) is


alled a Riemann surfa
e. Riemann surfa
es have been studied intensely whi
h

permitted among others the understanding of multivalued fun
tions like for instan
e

the 
omplex square root as rami�ed 
overing map over C. My favorite referen
e for

Riemann surfa
es is the book of Donaldson [7℄. A ni
e book on 
omplex manifolds

is Kodaira's book [20℄.

2.2 Almost 
omplex stru
ture

Adding a supplementary stru
ture on a manifold 
an basi
ally be done in two ways:

either one adds a geometri
 obje
t to the manifold or one 
hanges the model spa
e.

Often, there are two notions 
orresponding to the two approa
hes and a deep un-

derstanding of the stru
ture involves a link between these two approa
hes. We will

en
ounter several examples of this prin
iple: almost 
omplex, hyperboli
 and sym-

ple
ti
 stru
ture. For all of them, one adds a geometri
 obje
t to the manifold but

deep theorems (Newlander-Nirenberg, Killing-Hopf and Darboux resp.) give that

they 
an be modeled on Cn
, Hn

and (R2n, ω0) respe
tively.
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In our 
ase, we have de�ned a 
omplex manifold by 
hanging the model spa
e.

Keeping only the fa
t that every tangent spa
e 
arries a stru
ture of a 
omplex

ve
tor spa
e, one gets the notion of an almost 
omplex stru
ture:

De�nition 2. An almost 
omplex stru
ture on a smooth manifold M is an

endomorphism J(m) on TmM for all points m of M depending smoothly on the

point and satisfying J(m)2 = − id.

This de�nition 
learly extends the property i2 = −1. More pre
isely, a 
omplex

stru
ture on a manifold gives an obvious almost 
omplex stru
ture by pulling ba
k

the multipli
ation by i onM . An almost 
omplex stru
ture is said to be integrable

if it 
omes from a 
omplex stru
ture in this way. Note that a manifold with an almost


omplex stru
ture has ne
essarily even dimension by taking the determinant of the

equation J2 = − id.

The study of an additional stru
ture on a manifold is always done in three steps:

�rst one has to understand the stru
ture for one point whi
h often is linear algebra,

then lo
ally in a neighborhood of a point and �nally globally. From now on, we

restri
t attention to surfa
es.

Let's start with the �rst step: An almost 
omplex stru
ture J on C is uniquely

determined by the image of 1 whi
h has to be in C−R. Thus, we see that the spa
e

of almost 
omplex stru
tures on C has two 
onne
ted 
omponents both homeomor-

phi
 to the upper half plane H. These two 
omponents are 
anoni
ally isomorphi


sin
e we 
an asso
iate an almost 
omplex stru
ture −J to any J . Any almost 
om-

plex stru
ture gives an orientation (on every tangent spa
e so on the manifold) by

de
laring (1, J(1)) to be a dire
t basis. That's why we always restri
t attention

to oriented surfa
es with almost 
omplex stru
tures 
ompatible with the ori-

entation, meaning that the orientation 
oming from J 
oin
ides with the surfa
e

orientation.

For the se
ond step, a mira
le happens already dis
overed, as lots of other mir-

a
les, by Carl-Friedri
h Gauss.

Theorem 1 (Gauss 1822 (real analyti
 
ase), Korn and Li
htenstein 1916). Any

almost 
omplex stru
ture on a surfa
e is integrable, i.e. lo
ally trivialisable.

This theorem is equivalent to the existen
e of isothermal 
oordinates, i.e. 
oor-

dinates su
h that the metri
 lo
ally reads g = f(x, y)(x2 + y2). A proof of this 
an

be found in [6℄.

The theorem does not hold true in higher dimensions. In fa
t, it is possible

to asso
iate a notion of 
urvature to an almost 
omplex stru
ture. The famous

theorem of Newlander and Nirenberg asserts that an almost 
omplex stru
ture
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is integrable if and only if its 
urvature is vanishing. In the 
ase of a real analyti


manifold, this boils down to the Frobenius theorem on integrable distributions.

The third step, the global understanding of a 
omplex stru
ture, leads to the

notion of the Tei
hmüller spa
e. Before going there, we need a 
areful analysis of

the endomorphism J whi
h will be done in terms of the Beltrami 
oe�
ient.

2.3 Beltrami 
oe�
ient

To study an almost 
omplex stru
ture, we wish to diagonalize the endomorphism

J . Sin
e J2 = − id, the 
hara
teristi
 polynomial is given by X2 + 1, so the eigen-

values of J are i and −i. Thus, we have to 
omplexify the ve
tor spa
e TΣ into

TCΣ := TM⊗RC. Note that the 
omplexi�ed tangent spa
e 
arries a "natural" 
om-

plex multipli
ation by i 
oming from the 
omplexi�
ation and has also the almost


omplex stru
ture J (extended by C-linearity). We then get the de
omposition

TCΣ = T 1,0Σ⊕ T 0,1Σ

with T 1,0Σ the eigenspa
e of J asso
iated to the eigenvalue i and T 0,1Σ to −i.

∂

∂̄
real part TΣ

T 1,0Σ

T 0,1Σ

0

Fig. 1: Complexi�ed tangent spa
e

Expli
itly, we have

T 1,0Σ = {X − iJX | X ∈ TΣ} and T 0,1Σ = {X + iJX | X ∈ TΣ}

sin
e for example J(X − iJX) = JX − iJJX = i(X − iJX).

In the 
ase of an almost 
omplex stru
ture J0 
oming from a 
omplex 
hart

z = x+ iy, put

∂ = ∂z :=
1

2
(∂x − i∂y) and ∂̄ = ∂z̄ :=

1

2
(∂x + i∂y).

We see that T 1,0Σ (resp. T 0,1Σ) is generated by ∂ (resp. ∂̄). The di�erential operator

∂̄ is 
alled Cau
hy-Riemann operator.
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For any other almost 
omplex stru
ture J , we 
an express its eigenve
tors in

the basis formed by (∂, ∂̄) of TCΣ 
oming from some �xed 
omplex 
hart. Say for

instan
e that an eigenve
tor for −i is given by χ := a∂ + b∂̄ with a, b ∈ C. Then,

an eigenve
tor for i is given by χ̄ = ā∂̄ + b̄∂ where the 
omplex 
onjugation 
omes

from the natural 
omplex stru
ture on TCΣ.

Sin
e we are on a surfa
e, the endomorphism J is uniquely determined by its two

eigenspa
es generated by the ve
tors χ and χ̄. We only have to ensure that these

two ve
tors are linearly independent sin
e their 
orresponding eigenvalues are not

the same. A dire
t 
omputation shows that χ = a∂ + b∂̄ is linearly independent to

χ̄ = ā∂̄ + b̄∂ if and only if aā 6= bb̄. In the 
ase where b 6= 0, we 
an normalize χ to

χ = ∂̄−µ∂ with µ = −a/b ∈ C. This number µ is 
alled the Beltrami 
oe�
ient.

The 
ondition aā 6= bb̄ reads µµ̄ 6= 1. If J = J0 then µ = 0.

In the �rst step, we have seen that almost 
omplex stru
tures 
ome in pairs (J

and −J). The Beltrami 
oe�
ient of −J is 1/µ̄. We 
an thus restri
t attention to

the 
ase |µ| < 1.

An almost 
omplex stru
ture is en
oded by the Beltrami 
oe�
ient. For the

moment, we just saw an expression in a lo
al 
hart. To understand the global

nature of µ we have to look how it transforms under 
oordinate 
hanges. Changing

the holomorphi
 
hart z to w given by z 7→ z(w), the partial derivatives be
ome

∂
∂z

7→ dw
dz

∂
∂w

and

∂
∂z̄

7→ dw̄
dz̄

∂
∂w̄
. Thus,

∂z̄ − µ(z, z̄)∂z 7→
dw̄

dz̄
∂w̄ − µ(z, z̄)

dw

dz
∂w ∝ ∂w̄ −

dz̄/dw̄

dz/dw
µ(z, z̄)∂w

where ∝ simply means that the two ve
tors are proportional.

Thus,

µ(z, z̄) 7→ µ(w, w̄) =
dz̄/dw̄

dz/dw
µ(z, z̄). (1)

We say that µ is of type (-1,1) whi
h means that it is a se
tion ofK−1⊗K̄ where K =

T ∗(1,0)Σ denotes the 
anoni
al bundle of Σ and K−1 = K∗
in the Pi
ard group, the

group of line bundles over a Riemann surfa
e with tensor produ
t as 
omposition.

More expli
itly, the Beltrami 
oe�
ient is an obje
t of the form µ(z, z̄)dz̄ ⊗ ∂, i.e.

a (0,1)-form with values in K:

µ ∈ Ω0,1(Σ, K) = Γ(K∗ ⊗ K̄).

Remark. The variable z̄ has no geometri
 meaning. Writing µ(z, z̄) simply indi
ates

that µ is not ne
essarily holomorphi
.
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A fundamental prin
ipal in algebrai
 geometry is to understand a spa
e via its

fun
tions de�ned on it. In this spirit, we de�ne a holomorphi
 fun
tion f (with

respe
t to the almost 
omplex stru
ture J) by a fun
tion satisfying the Beltrami

equation

(∂̄ − µ∂)f = 0

whi
h is a generalization of the usual Cau
hy-Riemann equation. In the 
ase of the

natural 
omplex stru
ture J0, the Beltrami 
oe�
ient vanishes and one re
overs the

Cau
hy-Riemann equation.

Conversely, given any holomorphi
 fun
tion f with respe
t to J , we 
an re
over the

Beltrami 
oe�
ient by the formula

µ =
∂̄f

∂f

whi
h gives another explanation for the expression µ(z, z̄)dz̄ ⊗ ∂.

Remark. Change under general transformation

Under a general transformation z 7→ z(w, w̄) (not ne
essary holomorphi
), we get

∂
∂z

7→ ∂w
∂z

∂
∂w

+ ∂w̄
∂z

∂
∂w̄

and analogously for

∂
∂z̄
. Thus,

∂

∂z̄
− µ(z, z̄)

∂

∂z
7→

(

∂w

∂z̄
− µ(z, z̄)

∂w

∂z

)

∂

∂w
+

(

∂w̄

∂z̄
− µ(z, z̄)

∂w̄

∂z

)

∂

∂w̄

∝
∂

∂w̄
−

−∂w
∂z̄

+ µ(z, z̄)∂w
∂z

∂w̄
∂z̄

− µ(z, z̄)∂w̄
∂z

∂

∂w

Thus,

µ(w, w̄) =
−∂w

∂z̄
+ µ(z, z̄)∂w

∂z
∂w̄
∂z̄

− µ(z, z̄)∂w̄
∂z

.

This homographi
 
hange shows that µ does not live in C but rather in CP 1
. For a

holomorphi
 transform, we have

∂w̄
∂z

= 0 = ∂w
∂z̄

so we re
over formula (1) above.

2.4 Tei
hmüller spa
e

2.4.1 De�nition

Now we are ready for the third step, the global understanding of 
omplex stru
tures.

De�nition 3. The Tei
hmüller spa
e of an oriented manifold M denoted by TM

is the set of all 
omplex stru
tures on M 
ompatible with the orientation divided by

all di�eomorphisms isotopi
 to the identity.
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The de�nition means that in the Tei
hmüller spa
e, two 
omplex stru
tures are


onsidered as the same when one is the pullba
k by a di�eomorphism isotopi
 to

the identity of the other. The spa
e of 
ompatible 
omplex stru
tures modulo all

di�eomorphisms is 
alled moduli spa
e. Sin
e this spa
e is singular (for surfa
es

it is an orbifold), we prefer 
onsidering the Tei
hmüller spa
e.

The following famous theorem dis
overed by Tei
hmüller and proved by Ahlfors

and Bers gives the global pi
ture for 
omplex stru
tures on surfa
es:

Theorem 2 (Tei
hmüller, Ahlfors, Bers). The Tei
hmüller spa
e of a surfa
e Σ of

genus g ≥ 2 is a 
ontra
tible manifold of 
omplex dimension 3g − 3.

A quite a

essible proof of this theorem using the pants de
omposition 
an be found

in [2℄. Another proof is given in [10℄ using laminations. We will give a third proof in

whi
h we show even a little bit more sin
e we will des
ribe the tangent and 
otangent

spa
e of TΣ with our analysis of the Beltrami 
oe�
ient. In parti
ular we show that

it is a smooth manifold and re
over its dimension.

Note that 
ontra
tibility is easy sin
e a 
ompatible 
omplex stru
ture is given

by the Beltrami 
oe�
ient µ satisfying |µ| < 1. Considering (1 − t)µ for t ∈ [0, 1]

gives a retra
tion of the Tei
hmüller spa
e to the trivial stru
ture µ = 0.

2.4.2 Tangent and 
otangent spa
e of TΣ

We will give an expli
it des
ription of the tangent and 
otangent spa
e to the Te-

i
hmüller spa
e and re
over in parti
ular its dimension.

Theorem 3. The 
otangent spa
e to the Tei
hmüller spa
e at any point J is the set

of all holomorphi
 quadrati
 di�erentials.

Proof. We have seen that the 
onne
ted 
omponent of the set of 
omplex stru
tures

at one point is {µ ∈ C | µµ̄ < 1}. Thus, we have

TΣ = {µ ∈ K−1 ⊗ K̄ | |µ| < 1}/Diff0Σ

where Diff0Σ denotes all di�eomorphisms isotopi
 to the identity. Thus,

TJ(TΣ) = {δµ ∈ K−1 ⊗ K̄}/Γ(TΣ) (2)

where J ∈ TΣ and Γ(TΣ) denotes the spa
e of all smooth ve
tor �elds on Σ.

All we have to do is to 
al
ulate the a
tion of a (real) ve
tor �eld χ = v∂ + v̄∂̄

on the Beltrami 
oe�
ient µ. By theorem 1, there is an atlas in whi
h µ = 0.

So we are interested in variations δµ around µ = 0 
oming from ve
tor �elds.
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Re
all that a "variation" is nothing else than the derivative at 0 in some dire
tion:

δµ = d
dt
µ(z + tz0)

∣

∣

t=0
.

It is well known that the variation of a ve
tor �eld V by another ve
tor �eld

W is given by LWV = [W,V ] where L denotes the Lie derivative and [., .] the Lie

bra
ket. Thus, the variation of ∂̄ by χ is given by

[χ, ∂̄] = [v∂ + v̄∂̄, ∂̄] = −(∂̄v)∂ − (∂̄v̄)∂̄.

Integrating the ve
tor �eld χ gives a one parameter family indexed by a real number

ε. Thus,

∂̄ 7→ ∂̄ − ε((∂̄v)∂ + (∂̄v̄)∂̄) ∝ ∂̄ −
ε∂̄v

1− ε∂̄v̄
∂ = ∂̄ − ε(∂̄v)∂

at �rst order in ε.

Sin
e µ 7→ µ+ εδµ by de�nition of δµ, we get

δµ = ∂̄v (3)

Noti
e that for a holomorphi
 ve
tor �eld χ, we have ∂̄v = 0 so the 
omplex stru
ture

does not 
hange.

Finally, we get from (2) that

TJ(TΣ) = {δµ ∈ K−1 ⊗ K̄}/∂̄v

For the 
otangent spa
e T ∗
J (TΣ), we get even a simpler form using the fa
t that the

dual spa
e to K−1 ⊗ K̄ is K2
(the pairing being integration over Σ):

T ∗
J (TΣ) = ({δµ ∈ K−1 ⊗ K̄}/∂̄v)∗

= Ann ({∂̄v})

= {t ∈ K2 | ∫ t(∂̄v) = 0 ∀v ∈ K−1}

= {t ∈ K2 | ∫ v(∂̄t) = 0 ∀v ∈ K−1}

= {t ∈ K2 | ∂̄t = 0}

= H0(Σ, K2)

the last spa
e being the 0-th (�e
h) 
ohomology group whi
h is nothing else than the

set of holomorphi
 se
tions of the line bundle K2
over Σ, i.e. the set of holomorphi


quadrati
 di�erentials.
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Let's re
over the dimension of the Tei
hmüller spa
e. The Riemann-Ro
h

formula

dimC(H
0(L))− dimC(H

1(L)) = degL− g + 1

where L is a 
omplex line bundle over a Riemann surfa
e Σ of genus g, 
oupled with

Serre duality

H1(L) ∼= H0(L−1 ⊗K),

gives for L = K2
that

dimCH
0(K2)− dimCH

0(K−1) = 2(2g − 2)− g + 1 = 3g − 3

sin
e degK2 = 2degK = −2χ(Σ) = 2(2g−2) where χ(Σ) is the Euler 
hara
teristi
.

For g ≥ 2, we have degK−1 = 2−2g < 0 so there is no global non-zero holomorphi


se
tion sin
e the degree is the number of zeros minus the number of poles (with

multipli
ity) of any meromorphi
 se
tion. Thus for g ≥ 2, we get dimCH
0(K2) =

3g − 3.

Therefore

dimC TΣ = dimC T
∗
J (TΣ) = dimCH

0(K2) = 3g − 3.

Remark. From formula (3), we see that the tangent spa
e to the Tei
hmüller spa
e

is the 
okernel of the map

∂̄ : Ω0(Σ, K) → Ω0,1(Σ, K).

Remark. Variation around an arbitrary µ

Following the previous argument, we 
ompute the variation δµ indu
ed by a ve
tor

�eld χ = v∂ + v̄∂̄ around an arbitrary µ.

The in�nitesimal variation of ∂̄ − µ∂ by χ is given by

[v∂ + v̄∂̄, ∂̄ − µ∂] = (−∂̄v + µ∂v − v∂µ− v̄∂̄µ̄)∂ + (−∂̄v̄ + µ∂v̄)∂̄.

Thus, we get

∂̄ − µ∂ 7→ (1 + ε(−∂̄v̄ + µ∂v̄))∂̄ − (µ+ ε(∂̄v − µ∂v + v∂µ+ v̄∂̄µ̄))∂

∝ ∂̄ − (µ+ ε(∂̄v − µ∂v + v∂µ + v̄∂̄µ+ µ∂̄v̄ − µ2∂v̄))∂

Thus, noti
ing a ni
e fa
torization, we get

δµ = (∂̄ − µ∂ + ∂µ)(v + µv̄) (4)
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2.5 Uniformization theorem

Another way to analyze the global theory of 
omplex stru
tures on surfa
es is given

by Poin
aré's famous uniformization theorem whi
h gives the surfa
e as a quo-

tient of the hyperboli
 plane.

Theorem 4 (Poin
aré, Koebe, 1907). Every simply 
onne
ted Riemann surfa
e is

biholomorphi
 to either the Riemann sphere, the 
omplex plane or the hyperboli


plane.

The original proof of Poin
aré 
an be found in [25℄. A histori
al a

ount whi
h also

gives an idea of the proof is given in [1℄.

As a 
orollary, we get that for a surfa
e of genus g ≥ 2, its universal 
over

is biholomorphi
 to the hyperboli
 plane. Indeed, the fundamental group of Σ

a
ts freely by automorphisms on its universal 
over. Any orientation-preserving

automorphism of the sphere has a �xed point and any subgroup of the automorphism

group of the 
omplex plane is abelian. Sin
e π1(Σ) is non-abelian for g ≥ 2, the

universal 
over has to be the hyperboli
 plane. Sin
e the automorphism group of

the hyperboli
 plane is PSL(2,R), we get

Corollary. A 
omplex stru
ture on a surfa
e of genus g ≥ 2 is uniquely determined

by a homomorphism of its fundamental group to PSL(2,R) up to 
onjuga
y.

In this point of view, the Tei
hmüller spa
e TΣ is in
luded in the spa
e of all repre-

sentations of the fundamental group to PSL(2,R) with dis
rete image:

TΣ ⊂ Rep
dis
rete

(π1(Σ), PSL(2,R))

where Rep denotes the set of homomorphisms modulo 
onjuga
y. It is a theorem

that TΣ is in fa
t a 
onne
ted 
omponent of that spa
e (see [12℄).

In [16℄, Hit
hin proves that there is a 
onne
ted 
omponent T n
Σ of

Rep
dis
rete

(π1(Σ), PSL(n,R))

whi
h generalizes the ordinary Tei
hmüller spa
e in an algebrai
 way. For the mo-

ment, the only geometri
 meaning of this spe
ial 
omponent is given by generalizing

the hyperboli
 stru
ture, for instan
e in [14℄ for n = 4. But there is no interpreta-

tion of T n
Σ as the moduli spa
e of a stru
ture similar to the 
omplex stru
ture. We

hope that our geometri
 higher Tei
hmüller spa
e (see se
tion 4.4), 
oming from the

global theory of higher 
omplex stru
tures, will give su
h an interpretation.
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Another spin-o� 
oming from the uniformization theorem is that every Riemann

surfa
e of genus g ≥ 2 admits a hyperboli
 stru
ture. A hyperboli
 stru
ture on

a manifold is a Riemannian metri
 with 
onstant negative se
tional 
urvature. The

Killing-Hopf theorem gives that this is equivalent to 
hanging the model spa
e Rn
to

Hn
with transition fun
tions in SO(1, n), the group of isometries of the hyperboli


spa
e. Therefore, every surfa
e with hyperboli
 stru
ture has naturally a 
omplex

stru
ture sin
e H ⊂ C and SO(1, 2) ∼= PSL(2,R) ⊂ PSL(2,C) and homographies

are holomorphi
.

2.6 Complex proje
tive stru
ture*

In this subse
tion, we dis
uss another stru
ture whi
h is related to the global theory

of the 
omplex stru
ture.

Always guided by our prin
iple that a new stru
ture is either an additional

geometri
 obje
t or a 
hange of the model spa
e, we de�ne a 
omplex proje
tive

stru
ture to be an atlas with 
harts in CP n
and transition fun
tions in PSL(n +

1,C), the group of automorphisms of the 
omplex proje
tive spa
e. Two 
omplex

proje
tive manifolds M1 and M2 are isomorphi
 if there is a di�eomorphism f :

M1 → M2 that pulls ba
k proje
tive 
harts of M2 to proje
tive 
harts of M1. The

analogue of the Tei
hmüller spa
e in this setting, the spa
e of all 
omplex proje
tive

stru
tures modulo all automorphisms isotopi
 to the identity, is denoted by PM . A

survey on this stru
ture 
an be found in [8℄.

We are interested in the 
ase n = 1. Sin
e CP 1
is a 
omplex manifold and sin
e

any homography is holomorphi
, a proje
tive stru
ture gives a 
omplex stru
ture.

So a proje
tive stru
ture is a �ner notion but the equivalen
e relation is stronger

too. So, on
e we pass to equivalen
e 
lasses, the spa
e PΣ is a
tually bigger than

the Tei
hmüller spa
e:

Theorem 5. There is a surje
tive map π : PΣ → TΣ with �ber given by the set of

all holomorphi
 quadrati
 di�erentials H0(Σ, K2).

We will give a proof following indi
ations of my advisor. This proof is not new, see

for instan
e [8℄ (se
tion 3.2).

Let's give �rst an idea of the proof. The surje
tivity of the map is essentially

given by the uniformization theorem. To 
ompute the inverse image of a point, we

show that a proje
tive stru
ture on a surfa
e is equivalent to a di�erential operator

of order 2 on the surfa
e modulo some a
tion of fun
tions. Su
h an operator 
an be

redu
ed to the form ∂2 + t where the di�eren
e of two di�erent t's is a holomorphi
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quadrati
 di�erential. Sin
e a 
omplex stru
ture is uniquely determined by the

operator ∂, the �ber is given by H0(Σ, K2).

Proof. Sin
e a proje
tive stru
ture gives a 
omplex stru
ture, the map is well-de�ned

by taking the quotient by all di�eomorphisms isotopi
 to the identity.

By the uniformization theorem, a surfa
e Σ with given 
omplex stru
ture is bi-

holomorphi
 to a quotient of the hyperboli
 plane. For su
h a quotient, the transition

fun
tions are in SO(1, 2) ∼= PSL(2,R) ⊂ PSL(2,C). This gives surje
tivity.

As announ
ed, we will link proje
tive stru
tures to di�erential operators of order

2. To any operator D = a∂2 + b∂ + c we asso
iate a proje
tive stru
ture in the

following way: We know that lo
ally, the spa
e of solutions to Dψ = 0 is a two-

dimensional ve
tor spa
e. Choose a basis (ψ1, ψ2) and put u := ψ1/ψ2. The fun
tion

u 
hanges by a homography when we 
hange the basis (ψ1, ψ2). Thus, u 
an be seen

as a 
hart to CP 1
whi
h gives the proje
tive stru
ture.

Noti
e that the spa
e of all smooth non-vanishing fun
tionsO∗
a
ts on di�erential

operators on the left and also on the right. In this 
ase, both a
tions don't 
hange

the map u. Indeed, for a smooth non-vanishing fun
tion f , Dψ = 0 implies (fD)ψ =

f(Dψ) = 0 so nothing 
hanges by left a
tion. By right a
tion, de�ne ψ′
i =

1
f
ψi for

i = 1, 2, then Dψi = 0 implies (Df)ψ′
i = D(fψ′) = Dψ = 0, so u′ = ψ′

1/ψ
′
2 =

ψ1/ψ2 = u.

We will prove that the map from the set of all di�erential operators of order 2

modulo the right and left a
tion of O∗
to PΣ is an isomorphism. For that, we will

show that given any lo
al 
hart φ to an open subset of CP 1
, there is an unique (up

to O∗
-a
tion) operator D of order 2 satisfying Dφ = 0 and D(1) = 0. In that 
ase,

we have u = φ. To do so, we will �rst give a redu
ed form for any D using the left

and right a
tion of O∗
. This redu
ed form will be ∂2 + t.

We start with D = a∂2 + b∂ + c. Absorbing the 
oe�
ient a by a fun
tion on

the left, we 
an assume a = 1. We are looking for a fun
tion g su
h that Dg is

proportional to ∂2 + t. A dire
t 
omputation gives

Dg(ψ) = D(gψ) = g∂2ψ + (gb+ 2∂g)∂ψ + (gc+ ∂2g + b∂g)ψ

So we 
hoose g su
h that gb + 2∂g = 0 whi
h is always possible. We then have

∂g = −b/2g and ∂2g = g/2(b2/2− ∂b) and thus,

1

g
Dg = ∂2 + (c−

b2

4
−
∂b

2
).

This shows the existen
e of the redu
ed form. Uniqueness 
an be seen dire
tly.
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Now, we are looking for a solution ofD(1) = 0 andDφ = 0 where D = ∂2+b∂+c.

The �rst equation simply gives c = 0. The se
ond equation gives b = −∂2φ

∂φ
. So

D = ∂2 −
∂2φ

∂φ
∂

and the redu
tion pro
ess gives D = ∂2 + t with

t =
1

2

(

∂3φ

∂φ
−

3

2
(
∂2φ

∂φ
)2
)

.

Twi
e the term on the right sight is known as the S
hwarzian derivative, denoted

by S(φ, z).

Therefore, we see that modulo the a
tion of O∗
, there is a unique operator D giving

u = φ whi
h gives the isomorphism

1

PΣ
∼= {D}/O∗ = {∂2 + t}.

All what's left is to understand the global nature of t. So we have to see how t


hanges under 
oordinate transforms.

For a 
oordinate 
hange z 7→ z(w), we have ∂
∂z

7→ dw
dz

∂
∂w

and

∂2

∂z2
7→ (dw

dz
)2 ∂2

∂w2 +
d2w
dz2

∂
∂w
.

Thus,

D =
∂2

∂z2
+ t(z) 7→ (

dw

dz
)2
∂2

∂w2
+
d2w

dz2
∂

∂w
+ t(z)

The redu
tion pro
ess gives after some dire
t 
omputations

t(w) = (
dz

dw
)2(t(z)−

1

2
S(w, z))

with S(w, z) the S
hwarzian derivative of w with respe
t to z.

We see that t does not transform as a tensor but just as for the Christo�el sym-

bols in di�erential geometry, the di�eren
e of two t's transforms like a holomorphi


quadrati
 di�erential. So given a 
omplex stru
ture in form of ∂, 
hoose a proje
tive

stru
ture whi
h is mapped to the 
omplex stru
ture by π (we already know that π

is surje
tive). The proje
tive stru
ture 
orresponds to an operator D0 = ∂2 + t0.

Any other point above the 
omplex stru
ture is of the form ∂2 + t = D0 + (t − t0)

so the �ber of π is given by the holomorphi
 quadrati
 di�erentials.

Remark. The S
hwarzian derivative plays an important role in 
omplex and pro-

je
tive geometry sin
e it is invariant under homographies.

1

In fa
t, we proved only the lo
al version, for the global statement it is ne
essary to 
onsider

di�erential operators on non-trivial line bundles.
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2.7 Summary

In this �rst part, we saw that the 
omplex, almost 
omplex and hyperboli
 stru
-

tures are equivalent on a surfa
e. Indeed, the theorem of Gauss gives the equivalen
e

between 
omplex and almost 
omplex stru
ture and Poin
aré's uniformization the-

orem gives the 
onne
tion to the two other stru
tures. These various viewpoints on

the 
omplex stru
ture explain why multiple generalizations are possible.

The hyperboli
 and 
omplex proje
tive stru
tures are "rigid" in the sense that the

group of lo
al stru
ture preserving maps (SO(1, n) and PSL(n+1,C) resp.) is �nite-

dimensional. In 
ontrast, the group of lo
al di�eomorphisms preserving a 
omplex

stru
ture is the set of all holomorphi
 fun
tions with non-vanishing derivative whi
h

is in�nite-dimensional. We aim to generalize the 
omplex stru
ture by keeping an

in�nite-dimensional group of lo
al stru
ture preserving maps.

We saw that a 
omplex stru
ture on a surfa
e is uniquely determined by giving

a dire
tion ∂ in the 
omplexi�ed tangent spa
e TC
z Σ for every point z. For our

generalization, we need to repla
e the tangent by the 
otangent spa
e (to gain a


anoni
al symple
ti
 stru
ture). Sin
e J a
ts also on the 
omplexi�ed 
otangent

spa
e, a 
omplex stru
ture is also given by a dire
tion in T ∗C
z Σ. Thus, a 
omplex

stru
ture 
an be seen as a se
tion of the (pointwise) proje
tivized 
otangent spa
e

P(T ∗CΣ). In
identally, we have for any ve
tor spa
e V that P(V ) = Hilb2
0(V ) where

Hilb2
0 is the zero-�ber of the pun
tual Hilbert s
heme whi
h leads mira
ulously to

the next se
tion.
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3 The pun
tual Hilbert s
heme

The Hilbert s
heme is the parameter spa
e of all subs
hemes of an algebrai


variety. In general it is a quite 
ompli
ated s
heme but we are only interested in the

pun
tual Hilbert s
heme of the plane whi
h turns out to be irredu
ible and smooth.

An ex
ellent a

ount on the pun
tual Hilbert s
heme 
an be found in Haiman's

paper [15℄. A more te
hni
al referen
e is [24℄. We give here several viewpoints of

the pun
tual Hilbert s
heme. For understanding the higher 
omplex stru
ture, it is

su�
ient to read the paragraphs 3.1 to 3.4.

3.1 De�nition and examples

Take n distin
t points in the plane. We 
an 
onsider these points as an algebrai


variety. Its fun
tion spa
e is of dimension n (one value for ea
h point). This gives

a simple example of a s
heme of dimension zero. Su
h a s
heme is supported on

points, thus, its fun
tion spa
e is �nite-dimensional. We de�ne the length of a

zerodimensional s
heme to be the dimension of its fun
tion spa
e. So the variety of

n distin
t points is of length n. We will see that we get more interesting examples

when two or several points 
ollapses into one single point. The moduli spa
e of

zerodimensional subs
hemes of length n is 
alled the pun
tual Hilbert s
heme:

De�nition 4. The pun
tual Hilbert s
heme Hilbn(C2) of length n of the plane

is the set of ideals of C [x, y] of 
odimension n:

Hilbn(C2) = {I ideal of C [x, y] | dim(C [x, y] /I) = n}.

The subspa
e of Hilbn(C2) 
onsisting of all ideals supported on 0, i.e. whose as-

so
iated algebrai
 variety is (0, 0), is 
alled the zero-�ber of the pun
tual Hilbert

s
heme and is denoted by Hilbn
0 (C

2).

Let's work out some examples for small values of n.

For n = 1, the subs
heme is ne
essarily a single point, so Hilb1(C2) ∼= C2
.

For n = 2 we already saw the example with two distin
t points. Let's see what

happens when both 
ollapses to one point (following [5℄). Suppose that the �rst

point is at (0, 0) and that the se
ond point approa
hes along a 
urve (t, γ(t)) with

γ(0) = 0, γ holomorphi
 and t ∈ C. The ideal de�ning both points at time t is given

by

It = 〈x(x− t), x(y − γ(t)), y(x− t), y(y − γ(t))〉 .

As t goes to 0, we see that x2, xy and y2 are in I0 but these generate an ideal of


odimension 3. A more thorough analysis will give a fourth element of I0: For all
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t, we see that x(y − γ(t)) − (x − t)y = ty − xγ(t) ∈ It. Writing out the Taylor

expansion of γ yields γ(t) = γ′(0)t+O(t2) sin
e γ(0) = 0 and γ holomorphi
. Thus,

y − xγ′(0) +O(t) ∈ It for all t. When t goes to 0, we see that y − γ′(0)x ∈ I0. This

gives already an ideal of 
odimension 2. Hen
e

I0 =
〈

x2,−y + γ′(0)x
〉

.

Noti
e that only the slope at 0 of γ plays a role so we 
an 
hoose γ to be lin-

ear. Therefore we see that the zero-�ber of the Hilbert s
heme of length 2 is the

proje
tivized plane:

Hilb2
0(C

2) ∼= P(C2) = CP 1

For n = 3, let's 
ollapse the points (t, γ(t)) and (2t, γ(2t)) to (0, 0). We will see

that

I0 =

〈

x3,−y + γ′(0)x+
γ′′(0)

2
x2
〉

.

So we 
ould 
hoose γ to be a quadrati
 
urve.

γ

Fig. 2: Collapsing points

Some details for the interested reader: the ideal It at time t is given by

〈x(x− t)(x− 2t), x(x− t)(y − γ(2t)), x(y − γ(t))(x− 2t), x(y − γ(t))(y − γ(2t)),

y(x− t)(x− 2t), y(x− t)(y − γ(2t)), y(y − γ(t))(x− 2t), y(y − γ(t))(y − γ(2t))〉

So when t goes to zero, we get 〈x3, x2y, xy2, y3〉 ⊂ I0 whi
h only gives an ideal of


odimension 6. A re�nement shows that the element of It

x(x− t)(y−γ(2t))−y(x− t)(y−γ(2t))+
1

2
(x(y−γ(t))(x−2t)−y(y−γ(t))(x−2t))

equals

t2(−y + γ′(0)x+
γ′′(0)

2
x2 +O(t))

so when t goes to zero, we get that −y + γ′(0)x+ γ′′(0)
2
x2 ∈ I0.

Remark. If we 
ollapse two points to the origin along two distin
t straight lines,

we always get I0 = 〈x2, xy, y2〉 whi
h is just one point in the Hilbert s
heme. We see
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that to get the generi
 ideal (whi
h will be spe
i�ed below), we have to approa
h the

origin along the same 
urve of order 2.

Furthermore, it is not possible to 
ollapse �rst the two points outside the origin

and to 
ollapse them to the origin afterwards. This 
an give ideals whi
h are too

big. Thus, during the limit pro
ess, the distan
es between all points have to be of the

same order.

These examples strongly suggest to think of Hilbn
0 (C

2) as the spa
e of all polynomial


urves of degree n− 1 passing through the origin, or better a generi
 point of Hilbn
0


an be seen as the (n − 1)-jet of a 
urve passing through the origin. This 
learly

generalizes the proje
tivization whi
h we get for n = 2. It 
an be shown that


ollapsing (kt, γ(kt)) for k = 1, ..., n with γ(t) = a1t+ a2t
2+ ...+ ant

n
to (0, 0) leads

to the ideal

〈

xn+1,−y + a1x+ a2x
2 + ...+ anx

n
〉

.

3.2 Blowup of 
on�guration spa
es

Another way to look on the pun
tual Hilbert s
heme is its relation to the 
on�-

guration spa
e Symn(C2) of (not ne
essarily distin
t) n points of the plane. More

pre
isely, Symn(C2) is de�ned as the quotient of (C2)n by the permutation group Sn

a
ting by permuting the points. This spa
e is singular sin
e the symmetri
 group

does not a
t freely. The Hilbert s
heme is a blowup, i.e. a minimal resolution, of

the 
on�guration spa
e. Roughly speaking, when two or more points 
oin
ides, the

Hilbert s
heme gives an extra information "how they 
ollide".

To any ideal I of 
odimension n, one 
an asso
iate its support, i.e. the algebrai


variety de�ned by I. Taking multipli
ities into a

ount (de�ned by lo
alization), the

support of I 
onsists of n points. Sin
e the order of these points does not matter,

they 
an be seen as an element of Symn(C2). This map

π : Hilbn(C2) → Symn(C2)

is 
alled the Chow morphism.

It is 
lear that the Chow morphism is an isomorphism between the set of sub-

s
hemes without multipli
ities and the non-singular points of Symn(C2). In fa
t,

one 
an show that the Chow morphism is birational. Thus, we get

dimHilbn(C2) = 2n.
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Theorem 6 (Grothendie
k, Fogarty). The spa
e Hilbn(C2) is a smooth and irre-

du
ible s
heme. It is a blowup of the 
on�guration spa
e Symn(C2).

The original paper of Fogarty is [11℄. An a

essible proof using 
ombinatori
s is

given in Haiman [15℄. We just give some ideas and invite the reader to look up the

details in Haiman's paper. It is interesting to noti
e that the theorem only holds in

dimension 2 sin
e Hilbn(Cm) is neither irredu
ible nor smooth in general.

Let's start by giving expli
it 
oordinate 
harts. This 
an be done in terms of

Young diagrams. A Young diagram D is a �nite subset of N × N su
h that

whenever (i, j) ∈ D then the re
tangle de�ned by (i, j) and (0, 0) is entirely in D.

Usually, one uses matrix-like notations su
h that (0, 0) is in the upper left 
orner.

Figure 3 gives examples of Young diagrams (ignoring the entries for the moment).

1 y y2

x xy

x2 x2y

x3

1 y y2 y3

x xy

x2

x3

Fig. 3: Examples of Young diagrams

These diagrams play an important role for visualizing partitions. The set of all

Young diagrams with n squares is in bije
tion with the partitions of n. Indeed,

given a Young diagram, you 
an read o� the partition by adding the lines. Figure 3

for example gives 8=3+2+2+1 and 8=4+2+1+1.

Now, to any Young diagram D, we 
an asso
iate

BD = {xiyj | (j, i) ∈ D}

a subset of the standard basis of the polynomial ring C [x, y] (see again �gure 3).

We then set

UD = {I ∈ Hilbn(C2) | BD spans C [x, y] /I}.

On UD, we 
an de
ompose any monomial in the basis BD:

xrys =
∑

(j,i)∈D

crsij x
iyj mod I
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Proposition 1. These UD are open a�ne subvarieties 
overing Hilbn
. The 
oor-

dinate ring OUD
is generated by the crsij with (j, i) ∈ D. That gives the s
heme

stru
ture of Hilbn
.

See [15℄, proposition 2.1, for the 
omplete proof. We only give a ni
e proof that the

UD 
over all of Hilbn
.

Proof that all of Hilbn
is 
overed. Let I be any ideal of 
odimension n. We want

to show that there is a basis of C [x, y] /I whi
h is of the form BD for some Young

diagram D. We des
ribe an algorithm giving a basis of this form:

Sin
e 1 /∈ I, we 
an take 1 as the �rst basis ve
tor of C [x, y] /I. Then, you run

through [0, n] × [0, n] by 
olumns, starting at (0, 0). Every time the ve
tor xiyj is

linearly independent from those visited before, sele
t it as an element for our basis

(see �gure 4).

1 y y2 y3

x xy

x2 x2y

x3

Fig. 4: Getting a Young diagram

In this way, we get a set of linearly independent ve
tors. We have to show that there

are n of them and that they form a Young diagram.

Let's start with the last one. If the set D of sele
ted squares does not form a Young

diagram then there is a sele
ted square (j, i) su
h that (j, i−1) or (j−1, i) does not

belong to D. If (j, i−1) does not belong to D, then it is a linear 
ombination of the

previous squares. Sin
e xiyj = x(xi−1yj) and sin
e multipli
ation by x 
orresponds

to a verti
al shift, we get xiyj as a linear 
ombination of the previous squares, a


ontradi
tion. The same arguments holds for (j − 1, i) with a horizontal shift given

by multipli
ation by y.

Finally, if we had not sele
ted n squares, there is a ve
tor v linear independent to D.

Sin
e v is a sum of monomials, there is at least one square (j, i) in N× N whi
h is

linearly independent to D. The argument above shows that the set of squares of the

re
tangle de�ned by (0, 0) and (j, i) is a free set. So we have ij ≤ n whi
h implies

i ≤ n and j ≤ n. So the square (j, i) was already sele
ted in our pro
ess.
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This expli
it 
onstru
tion by "running in 
olumns" gives a visualization of ideals

of �nite 
odimension. In the dis
rete plane N×N, there are marked squares (with a

star ⋆, see �gure 4), one for ea
h 
olumn, 
orresponding to a relation in I su
h that

all squares 
oming before the star in their 
olumn form a Young diagram for I.

⋆

⋆

⋆ ⋆

⋆1 y y2 y3

x xy

x2 x2y

x3

Fig. 5: Ideal of the Hilbert s
heme

We 
an ask whi
h relations in the marked squares 
an be obtained by the pro
ess

"running in 
olumns". For example you 
an obtain 〈x2, xy, y2 − ax〉. But it is

impossible to get 〈x3, xy − ay − bx− cx2, y2〉 with a 6= 0 be
ause these relations

imply that x2y ∈ I and then that y + b
a
x + c

a
x2 ∈ I whi
h 
ontradi
ts the freeness

of (x, x2, y).

First of all, it is su�
ient to keep only the �rst star in ea
h row (when there

are at least two stars ín a row, like the se
ond row in �gure 5). Indeed, if there

are two neighboring stars in squares (j, i) and (j + 1, i), the relation of xiyj+1
in

terms of elements of D obtained by the "running in 
olumns" is the relation of xiyj

multiplied by y. Otherwise we would get a relation among elements of D whi
h is a

free set.

When you keep only the �rst star in ea
h row, the relations you 
an obtain are

redu
ed Gröbner bases with respe
t to the monomial order x < y. So we will say a

few words about Gröbner bases, see [9℄ for a detailed a

ount.

A Gröbner basis G of an ideal I in a polynomial ring C [x1, ..., xn] with respe
t

to some monomial order is a generating set of I su
h that the set of leading mono-

mials of G generates all leading monomials in I (whi
h form an ideal). Note that

we need a total monomial order to de�ne the leading monomial. A Gröbner basis G

is said to be redu
ed if all leading 
oe�
ients in G are 1 and if every monomial of

a term in G is not in the ideal generated by the leading monomials of the other ele-

ments of G. A fundamental theorem states the existen
e and uniqueness of redu
ed

Gröbner bases.
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The pro
ess "running in 
olumns" 
orresponds to the monomial order x < y

(lexi
ographi
 order). The marked squares 
orrespond to the leading monomial of

the relation asso
iated to the square sin
e this relation links the square to the squares

visited before.

Proposition 2. Keeping only the �rst relation in ea
h row obtained by the pro
ess

des
ribed in the previous proof, we get a redu
ed Gröbner bases. Conversely, every

redu
ed Gröbner basis generating an ideal of �nite 
odimension 
an be obtained in

this way.

Proof. For the �rst part, we have already justi�ed that the �rst stars in ea
h row

form a generating set. Whenever a polynomial P is in I its leading monomial 
annot

be in D, otherwise we would get a relation in D whi
h is a free set modulo I. By the

de�nition of the marked squares, we see that the leading monomial of P is divisible

by a leading monomial of a marked square. So we have a Gröbner basis. Sin
e we

kept only one star in ea
h row and sin
e a relation links a marked square to squares

in D, it is 
lear that this Gröbner basis is redu
ed.

The 
onverse follows from the uniqueness of Gröbner bases and the �rst part of the

proof.

Noti
e that starting with a generating set of I whi
h does not form a Gröbner

basis, we 
an apply Bu
hberger's algorithm to obtain the redu
ed Gröbner basis.

Noti
e further that running through N×N in rows gives redu
ed Gröbner bases with

respe
t to the monomial order x > y.

3.3 Commuting matri
es

Interestingly, there is a des
ription of the pun
tual Hilbert s
heme in terms of linear

algebra.

For a given ideal I of 
odimension n, we 
an 
onsider the multipli
ation by x

as a linear operator A of the n-dimensional spa
e C [x, y] /I. In the same way,

we 
an 
onsider the multipli
ation by y as a linear operator B. Sin
e these two

operations 
ommute, the operators A and B do so too. In addition, the element

1 ∈ C [x, y] /I is a 
y
li
 ve
tor for A and B, meaning that C [x, y] /I is generated

by {AnBm.1 | n,m ∈ N}. We 
onsider A and B as 
onjuga
y 
lasses of matri
es.

Proposition 3. The pun
tual Hilbert s
heme Hilbn(C2) is in bije
tion with 
onju-

ga
y 
lasses of matri
es A,B ∈ Mn(C) whi
h 
ommute and admit a 
y
li
 ve
tor.
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Proof. We will give the inverse 
onstru
tion: given two 
ommuting matri
es A and

B whi
h admit a 
y
li
 ve
tor, put

I = {P ∈ C [x, y] | P (A,B) = 0}.

This de�nes 
learly an ideal. The fa
t that A and B 
ommute implies that I

is of 
odimension at most n and the existen
e of a 
y
li
 ve
tor shows that the


odimension is at least n. It is easy to 
he
k that this gives the inverse 
onstru
tion

to the above one.

We 
an give a des
ription of the Chow morphism in this pi
ture: Sin
e A and B


ommute, it is possible to put them simultaneously in upper triangular form with

diagonal entries (λ1, ..., λn) for A and (µ1, ..., µn) for B. Then the Chow morphism

π : Hilbn(C2) → Symn(C2) is given by

π(A,B) = ((λ1, µ1), ..., (λn, µn)) (5)

To prove this, �rst suppose that all diagonal entries are di�erent: λi 6= λj and µi 6= µj

for all i 6= j. Then, the matri
es A and B are simultaneously diagonalizable. In

that 
ase, the set of polynomials P with P (A,B) = 0 
oin
ides with the set of

polynomials vanishing on the points (λi, µi) for 1 ≤ i ≤ n. Hen
e, in that 
ase

the Chow morphism is given by the map de�ned in (5). We 
on
lude by density of

diagonalizable matri
es.

Therefore, the zero-�ber Hilbn
0 (C

2) = π−1(0) is given by nilpotent 
ommuting ma-

tri
es admitting a 
y
li
 ve
tor.

An appli
ation of this viewpoint is the irredu
ibility of the set of all 
ommuting

nilpotent matri
es. See [4℄ for details.

3.4 Zero-�ber of the Hilbert s
heme

In this subse
tion, we investigate more in detail the zero-�ber of the Hilbert s
heme

sin
e it will show up in the de�nition of the higher 
omplex stru
ture. In parti
ular,

we will give its dimension.

We think of an ideal I in Hilbn
0 as generated by marked squares around a Young

diagram as shown in �gure 5 above. Sin
e I is supported on 0, no relation has


onstant terms. Furthermore, we saw in the previous se
tion that the zero-�ber


orresponds to 
ommuting nilpotent matri
es. Thus, we get 〈x, y〉n ⊂ I, whi
h

means that xkyn−k = 0 in I for k = 0, ..., n. This allows to "
ompute formally"

in Hilbn
0 pushing problems in higher and higher orders su
h that they will disappear
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at order n. We will use this argument several times in the sequel where it will be


learer what it means.

Theorem 7. The zero-�ber Hilbn
0 (C

2) is a irredu
ible s
heme of dimension n− 1.

A proof 
an be found in [4℄. Noti
e that unlike the Hilbert s
heme, the zero-�ber is

not smooth. We will give a simple argument to 
ompute the dimension of Hilbn
0 .

Proof of the dimension. In the previous se
tion, we saw that Hilbn
0 is the set of


ommuting nilpotent matri
es A and B admitting a 
y
li
 ve
tor up to 
onjuga
y. A

generi
 nilpotent matrix 
an be put into Jordan normal form with only one Jordan

blo
k (the set of these matri
es is dense in the set of nilpotent matri
es). So to


ompute the dimension at a generi
 point of Hilbn
0 , we 
ompute the dimension of

the 
entralizer of a Jordan blo
k.

A dire
t 
omputation gives that a matrix B 
ommutes with a Jordan blo
k A i�

it is upper triangular with equal entries in ea
h over-diagonal (line parallel to the

main diagonal situated above it). Sin
e B is nilpotent, there are only zeros on the

diagonal.

Therefore, there are n− 1 degrees of freedom for B. The extra 
ondition that A

and B admit a 
y
li
 ve
tor 
an only de
rease this estimate. Finally we see that the

dimension of Hilbn
0 at a generi
 point is at least n− 1 by giving an expli
it example

of an ideal with n− 1 degrees of freedom (see below).

We 
an see that the spe
ial elements of Hilbn
0

〈

xn,−y + a1x+ a2x
2 + ...+ an−1x

n−1
〉

and

〈

yn,−x+ b1y + b2y
2 + ...+ bn−1y

n−1
〉

have n − 1 degrees of freedom. In fa
t, these are the generi
 ideals in the sense

that the set of all ideals of Hilbn
0 whi
h are not of this form have dimension stri
tly

smaller than n − 1. See [18℄ (
orollary 1) for a proof of that fa
t. Noti
e that the

generi
 ideals 
orresponds to Young diagrams whi
h are either a single 
olumn or a

single row.

1

x

x2

1 y y2 y3

Fig. 6: Young diagrams of generi
 ideals
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3.5 Interlude: Series reversion*

We just mentioned that the generi
 ideal in Hilbn
0 (C

2) is of the form

〈

xn,−y + a1x+ a2x
2 + ...+ an−1x

n−1
〉

or

〈

yn,−x+ b1y + b2y
2 + ...+ bn−1y

n−1
〉

or both. So it is natural to ask about the 
oordinate 
hange in the 
ase when an

ideal 
an be expressed in both forms, i.e. we are looking for an expression of the bi

in terms of the aj .

The algebrai
 approa
h is to insert the equation x = b1y + b2y
2 + ... + bn−1y

n−1

into y = a1x + a2x
2 + ... + an−1x

n−1
and to 
ompare 
oe�
ients. One gets for the

�rst values:

b1 =
1

a1

b2 =
−a2
a31

b3 =
1

a51
(−a1a3 + 2a22)

b4 =
1

a71
(−a21a4 + 5a1a2a3 − 5a32)

b5 =
1

a91
(−a31a5 + 6a21a2a4 + 3a21a

2
3 − 21a1a

2
2a3 + 14a42)

The last 
oe�
ient seems to be a Catalan number with alternating sign whi
h

triggered my interest (Haiman's paper is about a generalization of Catalan numbers).

Other striking fa
ts: in the expression of bn, the number of ai's is n−1 and the sum

of their indi
es (with multipli
ity) is equal to 2n− 2. That is, the terms are of the

form ai11 ...a
in
n with

i1 + i2 + ... + in = n− 1 and i1 + 2i2 + ... + nin = 2n− 2.

This is equivalent to i1 = n−i2− ...−in and i2+2i3+ ...+(n−1)in = n−1. The last

equation gives a bije
tion to partitions of n− 1: for a given partition of n− 1, if ik

denotes the number of terms k−1 in the partition, we get i2+2i3+ ...+(n−1)in =

n− 1.

Fixing some notation: we will write "ν ⊢ n" for "ν is a partition of n", ν =

(ν1, ..., νn) with νk the number of k's in the partition and |ν| = ν1 + ...+ νn. In the

Young diagram asso
iated to ν, the number νk 
ounts the number of lines of length
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k and |ν| is the number of lines.

So we 
onje
ture that

bn
?
=

1

a2n−1
1

∑

ν⊢(n−1)

cνa
n−1−|ν|
1 aν12 ...a

νn−1

n (6)

with some 
onstants cν . Analyzing some numeri
al data, we further 
onje
ture an

expli
it formula for these 
onstants:

cν
?
=

(−1)|ν|(|ν|+ n− 1)!

n!ν1!...νn−1!
(7)

For the 
oe�
ient in the last term of bn, we have ν = (0, n − 1, 0..., 0), so we get

(−1)n−1 1
n

(

2n−2
n−1

)

, a Catalan number with sign. The other 
oe�
ients seem to have

no link to Haiman's t, q-Catalan numbers.

The algebrai
 approa
h gives a re
ursive formula with several partitions involved.

This formula 
an be used to prove the 
onje
tured form (6) but does not give (7)

(at least not easily). I think that one needs a 
ombinatorial interpretation to prove

(7) with this approa
h. I only su

eeded to prove the appearan
e of the Catalan

numbers with a 
ombinatorial argument.

In order to prove (7) we give an analyti
 approa
h. In fa
t, our problem is that

of the formal reversion of power series, i.e. given y = f(x) = a1x + a2x
2 + ... a

formal power series, we put f−1(y) = b1x + b2x
2 + ... the power series expansion of

the inverse fun
tion (with respe
t to 
omposition, not multipli
ation) and we want

to express at least formally the bi in terms of the aj . Note that in the 
ase of the

Hilbert s
heme, this formal 
orresponden
e will be exa
t sin
e we 
ut the series

expansions at level n.

Now, we 
an express the 
oe�
ients by derivatives: k!ak = f (k)(0) and k!bk =

(f−1)(k)(0). All we have to do is to express the derivatives of f−1
in terms of

derivatives of f . The �rst derivatives are given by

(f−1)′ =
1

f ′ ◦ f−1

(f−1)′′ =
−f ′′ ◦ f−1

(f ′ ◦ f−1)3

(f−1)′′′ =
1

(f ′ ◦ f−1)5
(−(f ′ ◦ f−1)(f ′′′ ◦ f−1) + 3(f ′′ ◦ f−1)2)

(f−1)(4) =
1

(f ′)7
(−(f ′)2f (4) + 10f ′f ′′f ′′′ − 15(f ′′)3)

where we omitted the "◦f−1
" in the last line. This is quite similar to the formulas
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for the bi. So we 
onje
ture that there are 
oe�
ients εν su
h that

(f−1)(n)
?
=

1

(f ′)2n−1

∑

ν⊢(n−1)

εν(f
′)n−1−|ν|(f ′′)ν1...(f (n))νn−1

(8)

Equation (7) and (8) are of 
ourse related sin
e k!bk = (f−1)(k)(0). Thus, from our


onje
ture on cν , we get a 
onje
ture on the 
oe�
ients εν whi
h we will be able to

prove:

εν
?
=

(−1)|ν|(|ν|+ n− 1)!

(2!)ν1 ...(n!)νn−1ν1!...νn−1!
(9)

By indu
tion on ν and n, we get by omitting terms ◦f−1
:

(f−1)(n+1) =





1

(f ′)2n−1

∑

ν⊢(n−1)

εν(f
′)n−1−|ν|(f ′′)ν1...(f (n))νn−1





′

=
1

(f ′)2n+1





∑

ν⊢(n−1)

εν(−n− |ν|)(f ′)n−1−|ν|(f ′′)ν1+1(f ′′′)ν2 ...(f (n))νn−1

+
n−1
∑

l=1

∑

ν⊢(n−1)

εννl(f
′)n−|ν|(f ′′)ν1 ...(f (l+1))νl−1(f (l+2))νl+1+1...(f (n))νn−1





=
1

(f ′)2n+1

∑

ν̃⊢n

εν̃(f
′)n−|ν̃|(f ′′)ν̃1...(f (n+1))ν̃n

where for ν̃ ⊢ n we put

εν̃ = (−n− |ν̃|+ 1)ε(ν̃1−1,ν̃2,...,ν̃n) +

n−1
∑

l=1

(ν̃l + 1)ε(ν̃1,...ν̃l+1,ν̃l+1−1,...,ν̃n)

By indu
tion hypothesis, we 
an insert (9) in the last expression whi
h yields

εν̃ =
(−1)|ν̃|(|ν̃|+ n− 1)!

(2!)ν̃1...((n + 1)!)ν̃n ν̃1!...ν̃n!

(

2!ν̃1 +

n−1
∑

l=1

(ν̃l + 1)
(l + 2)!ν̃l+1

(l + 1)!(ν̃l + 1)

)

=
(−1)|ν̃|(|ν̃|+ n)!

(2!)ν̃1...((n + 1)!)ν̃n ν̃1!...ν̃n!

sin
e 2ν̃1 + 3ν̃2 + ...+ (n+ 1)ν̃n = |ν̃|+ n. This is exa
tly the 
onje
tured form (9).

Therefore, we su

eeded to show our four 
onje
tures (6) to (9).

Sin
e the pro
edure of derivation gives only integers, we get as a 
orollary that

εν =
(−1)|ν|(|ν|+ n− 1)!

(2!)ν1...(n!)νn−1ν1!...νn−1!
∈ Z for ν ⊢ n− 1
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This 
an also be seen by a 
ombinatorial argument: if ν is a partition of n− 1, then

(n− 1)!
∏

νj!(j!)νj

is an integer be
ause it 
ounts the number of set-theoreti
 partitions of {1, 2, ..., n−1}

with νk sets of 
ardinal k for all k (imagine any permutation, the �rst ν1 elements will

be one-element subsets, the next ν2 pairs will be the two-element subsets et
.). By

adding one element to ea
h subset, we get a bije
tion to partitions of {1, ..., n−1+|ν|}

with subsets of at least two elements. Now, νk 
ounts the number of (k+1)-element

subsets. Thus

(n− 1 + |ν|)!
∏

νj !(j + 1)!νj
∈ N

More surprising is the fa
t that also cν is an integer whi
h 
an be easily seen in the

algebrai
 approa
h. Hen
e

(n− 1 + |ν|)!

n!
∏

νj !
∈ N for ν ⊢ n− 1.

This generalizes the property of Catalan numbers, that

(

2n
n

)

is divisible by n+ 1.

These formulas are already known: the reversion of power series is known as La-

grange's inversion theorem. The identities (8) and (9) inverses Faà di Bruno's

formula whi
h give an expression for derivatives of a 
omposition (f ◦ g)(n). See

for instan
e [23℄, page 411 to 413 for the reversion of power series and [19℄ for Faà

di Bruno's formula.

3.6 Orthogonal viewpoint*

In this subse
tion, we des
ribe a pairing on C [x, y] whi
h will allow a des
ription

of the zero-�ber of the Hilbert s
heme as the spa
e of translation-invariant �nite-

dimensional ve
tor subspa
es of C [x, y]. Every ve
tor spa
e is over C in this part.

Let's start with the de�nition of the pairing:

〈P,Q〉 := P (
∂

∂x
,
∂

∂y
).Q

∣

∣

∣

∣

x=y=0

where the little point means "applied to".

To see what is going on and why this formula gives a pairing, let's 
ompute its value

in the standard basis {xnym | n,m ∈ N}. We easily get

〈

xnym, xn
′

ym
′

〉

= n!m!δn,n′δm,m′
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Thus, we see that the pairing is nothing else than the standard inner produ
t of

R [x, y] with weights n!m! for xnym extended by C-bilinearity. This shows in parti
-

ular that 〈., .〉 is symmetri
 and non-degenerate.

On
e we have a pairing, we 
an de�ne the orthogonal 
omplement S⊥
of any

subset S of C [x, y]. In the 
ase where S is an ideal, its orthogonal has spe
ial

properties:

Proposition 4. Let I be an ideal of C [x, y]. Then I⊥ is a ve
tor spa
e stable under

derivation and translation.

Proof. For any subset S, it is easy to 
he
k that S⊥
is a ve
tor spa
e, using the

C-bilinearity of the pairing. For the invarian
e, noti
e the following fundamental

identity:

〈PQ,R〉 =

〈

P,Q(
∂

∂x
,
∂

∂y
).R

〉

(10)

Thus, if P is an element of I, Q any polynomial and R in I⊥, we get that Q( ∂
∂x
, ∂
∂y
).R

also belongs to I⊥. Therefore I⊥ is stable under derivation. Finally, sin
e

P (x+ a, y + b) = exp(a
∂

∂x
+ b

∂

∂y
).P (x, y)

we see that I⊥ is also invariant under all translations.

Remark. The invarian
e of I⊥ under translation shows that I⊥ is a sub
oalge-

bra of C [x, y] in the following sense: If P ∈ I⊥, we have ∆P ∈ I⊥ ⊗ I⊥ where

∆P (x1, y1, x2, y2) = P (x1 + x2, y1 + y2) is the dual operation to addition.

Now, we 
an des
ribe expli
itly the orthogonal of the zero-�ber of the pun
tual

Hilbert s
heme, de�ned by taking the orthogonal to every ideal I ∈ Hilbn
0 :

Proposition 5. The orthogonal of Hilbn
0 (C

2) is the spa
e of all ve
tor subspa
es of

C [x, y] of dimension n whi
h are invariant under translations. The same holds true

when you repla
e "translation" by "derivation".

Proof. The orthogonal 
omplement sends ve
tor spa
es of 
odimension n to ve
tor

spa
es of dimension at most n. In fa
t, if we work in the ring of formal power

series C [[x, y]] then the orthogonal is of dimension exa
tly n. But for the zero-�ber

Hilbn
0 , we 
ut at level n, that is 〈x, y〉

n = 0. Thus, for I ∈ Hilbn
0 (C

2), we see that

I⊥ is of dimension n and by the previous proposition is invariant under transla-

tions and derivations. Conversely, if J is a n-dimensional ve
tor spa
e invariant

under all translations, it is espe
ially invariant under all derivations (=in�nitesimal

translations). Then formula (10) shows that J⊥
is an ideal. Finally, sin
e J is
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�nite-dimensional, there is an integer m su
h that 〈x, y〉m ⊂ J⊥
showing that J⊥

is

supported on 0.

Sin
e 〈., .〉 is an inner produ
t, we 
an identify the Hilbert s
heme with the spa
e

of translation-invariant �nite-dimensional subspa
es.

Let's give some examples:

For I = 〈x2, xy, y2〉, we get I⊥ = Vect(1, x, y).

For I2 = 〈x2,−y + a1x〉, we get I
⊥
2 = Vect(1, x+ a1y).

For I3 = 〈x3,−y + a1x+ a2x
2〉, we get I⊥3 = Vect(1, x+ a1y, (x+ a1y)

2 + 2a2y).

For I4 = 〈x4,−y + a1x+ a2x
2 + a3x

3〉, we get

I⊥4 = Vect(1, x+ a1y, (x+ a1y)
2 + 2a2y, (x+ a1y)

3 + 6a2y(x+ a1y) + 6a3y)

For the interested reader, we indi
ate how we 
omputed the 
omplement be
ause it is

another example of the "formal 
omputation" in Hilbn
0 . In the 
ase of I3 for instan
e,

we try to get a term in I⊥3 starting with x2. To be orthogonal to −y+a1x+a2x
2
, we

have to add 2a2y and for x(−y+a1x+a2x
2) we get 2a1xy. Finally orthogonality with

y(−y+ a1x+ a2x
2) gives a term a21y

2
. Thus, we get x2 + 2a1xy + a21y

2 + 2a2y ∈ I⊥3 .

The pro
ess stops be
ause 〈x, y〉3 = 0 mod I3.

We �nish this subse
tion by an expli
it formula for the dual of In: Adopt-

ing the notations for partitions as in the previous subse
tion, we get for In+1 =

〈xn+1,−y + a1x+ a2x
2 + ... + anx

n〉 that

Proposition 6.

I⊥n+1 =I
⊥
n ⊕Vect(

n
∑

l=0

∑

ν⊢n−l
ν1=0

n!

l!ν2!...νn!
aν22 ...a

νn
n y

|ν|(x+ a1y)
l)

=I⊥n ⊕Vect(

n
∑

m=0

∑

ν⊢n−m

n!

m!ν1!ν2!...νn!
aν11 a

ν2
2 ...a

νn
n y

|ν|xm)

Proof. The formula is true for n = 1, so we use indu
tion. To prove the formula, it

is 
lear that I⊥n ⊂ I⊥n+1 sin
e In+1 ⊂ In. So it is su�
ient to �nd a ve
tor orthogonal

to In+1 whi
h is linear independent to I⊥n . The 
andidate P (x, y) for this ve
tor

whi
h is given in the formula above is 
learly linear independent from I⊥n sin
e its

degree in x is higher than that of any element of I⊥n (by indu
tion hypothesis). In

addition, it is annulated by

∂n+1

∂xn+1 sin
e it has degree n in x. We will show that

(−
∂

∂y
+ a1

∂

∂x
+ ...+ an

∂n

∂xn
).P (x, y) = 0.
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Sin
e any element of In+1 is of the form T = Axn+1 +B(−y + a1x+ ...+ anx
n), we

get

〈T, P 〉 =

〈

A,
∂n+1P

∂xn+1

〉

+

〈

B, (−
∂

∂y
+ a1

∂

∂x
+ ... + an

∂n

∂xn
).P

〉

= 0

whi
h shows that P ∈ I⊥n+1.

We �rst 
ompute the derivative of P with respe
t to x:

∂P

∂x
=

n
∑

l=0

∑

ν⊢n−l
ν1=0

n!

(l − 1)!ν2!...νn!
aν22 ...a

νn
n y

|ν|(x+ a1y)
l−1

=n

n−1
∑

l=0

∑

ν⊢n−l−1
ν1=0

(n− 1)!

l!ν2!...νn!
aν22 ...a

νn
n y

|ν|(x+ a1y)
l

To �nish, let's 
ompute the y-derivative of P :

∂P

∂y
=

n
∑

l=0

∑

ν⊢n−l
ν1=0

n!

(l − 1)!ν2!...νn!
aν22 ...a

νn
n y

|ν|−1(x+ a1y)
l−1(a1y + |ν|(x+ a1y))

=

n−1
∑

m=0

n!

m!
an−m

m
∑

l=0

∑

ν⊢m−l
ν1=0

m!

l!ν2!...νn!
aν22 ...a

νn
n y

|ν|(x+ a1y)
l

=

n−1
∑

m=0

an−m

∂n−m

∂xn−m
.P

where we get from the �rst to the se
ond line by using the fa
t that to a partition

ν ⊢ n− l, we 
an asso
iate |ν| partitions of smaller numbers by forgetting one of the

terms and we get from the se
ond to the third line by using our 
omputation of the

x-derivative of P , iterated several times.
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4 Higher 
omplex stru
ture

In this �nal part, we de�ne the higher 
omplex stru
ture and explore its main prop-

erties. For 
omplex stru
tures, we were interested in them up to di�eomorphisms

isotopi
 to the identity. We will see that for higher 
omplex stru
tures, it is better to

enlarge the group of di�eomorphisms. We then explore the lo
al and global theory

of that new stru
ture.

4.1 De�nition and basi
 properties

In se
tion 2, we saw that a 
omplex stru
ture on a surfa
e Σ is uniquely given by

a se
tion σ of P(T ∗CΣ), the (pointwise) proje
tivized 
omplexi�ed 
otangent spa
e,

su
h that at any point z ∈ Σ, σ(z) and σ̄(z) are linearly independent. In the

previous se
tion, we saw that the proje
tivization is a spe
ial 
ase of the zero-�ber

of the pun
tual Hilbert s
heme for n = 2:

P(T ∗CΣ) = Hilb2
0(T

∗CΣ).

Presented in this manner, it is easy to guess our de�nition for the higher 
omplex

stru
ture. Note that a 
hart z on Σ gives ve
tors p = ∂
∂z

and p̄ = ∂
∂z̄

whi
h 
an be

seen as linear fun
tionals, i.e. linear 
oordinates, on T ∗CΣ.

De�nition 5. A higher 
omplex stru
ture of order n on a surfa
e Σ, for short

n-
omplex stru
ture, is a se
tion of Hilbn
0 (T

∗CΣ) su
h that at ea
h point z we

have I(z)⊕ Ī(z) = 〈p, p̄〉.

For n = 2, the extra 
ondition I ⊕ Ī = 〈p, p̄〉 simply reads µ2µ̄2 6= 1 whi
h is

exa
tly what we had for the 
omplex stru
ture (see 2.3). So we re
over the 
omplex

stru
ture for n = 2. We 
hose the name of "higher 
omplex stru
ture" be
ause we

hope to show a strong relation to higher Tei
hmüller spa
es.

Any higher 
omplex stru
ture gives in parti
ular a 
omplex stru
ture by forget-

ting all µk apart from µ2. Hen
e, a higher 
omplex stru
ture gives an orientation on

the surfa
e. We say that a higher 
omplex stru
ture is 
ompatible if this indu
ed

orientation 
oin
ides with the surfa
e orientation.

As for the almost 
omplex stru
ture, we will analyze the n-
omplex stru
ture in

three steps. We start with the analysis at one point. The 
ondition I ⊕ Ī = 〈p, p̄〉

gives the form of the ideal at ea
h point:
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Proposition 7. A 
ompatible n-
omplex stru
ture at any point z is given by an

ideal of the form

I(z) =
〈

pn,−p̄+ µ2(z, z̄)p+ ... + µn(z, z̄)p
n−1
〉

with |µ2| < 1.

The 
oe�
ients µk are 
alled higher Beltrami 
oe�
ients.

Proof. Let I1 be the set of all degree 1 polynomials whi
h appear in an element of

I. It is 
lear that I1 is a ve
tor subspa
e of C
2
sin
e I is a ve
tor spa
e. We will

show that I1 is of dimension 1.

If I1 = {0}, then so is Ī1 = {0}. But by I ⊕ Ī = 〈p, p̄〉, we get I1 ⊕ Ī1 = C2

whi
h is absurd. If I1 = C2
then I = 〈p, p̄〉 whi
h 
ontradi
ts the fa
t that it is of


odimension n ≥ 2. Indeed, take any polynomial P without 
onstant term. Sin
e we

assume I1 = C
2
, we 
an eliminate the homogenous part of degree 1 of P , introdu
ing

only terms of higher degree. By multiplying elements of I1 by p or p̄, we 
an also

eliminate all terms of degree 2 in P introdu
ing only terms of degree at least 3 and

so on. Sin
e we have pkp̄n−k = 0 mod I for all k, this pro
ess will stop and P will

be in I.

Therefore I1 = Vect(ap + bp̄) is of dimension 1. So Ī1 = Vect(āp̄ + b̄p) and the


ondition I ⊕ Ī = 〈p, p̄〉 is equivalent to aā 6= bb̄. Sin
e the n-
omplex stru
ture

is 
ompatible, we have |µ2| = |a/b| < 1. In parti
ular, b 6= 0 whi
h gives I1 =

Vect(−p̄ + µ2p).

Finally, sin
e −p̄ + µ2p ∈ I1, there is a relation of the form p̄ = µ2p+ higher terms

in I. Iterating this equality by repla
ing it in any p̄ appearing in the higher terms,

we will get an expression of p̄ in terms of monomials in p (this pro
edure will stop).

Sin
e pn = 0 in I, we get

p̄ = µ2p+ µ3p
2 + ...+ µnp

n−1 mod I.

To give an example, we get for n = 4 and p̄ = ap+ bpp̄ that

p̄ = ap+ bp(ap + b(ap+ bp̄)) = ap+ abp2 + ab2p3.

Remark. In the proof, we see that if a n-
omplex stru
ture given by I(z) is not


ompatible, then the 
onjugated stru
ture Ī(z) is 
ompatible. Hen
e like for the


omplex stru
ture, we get two 
onne
ted 
omponents in the global theory linked by


omplex 
onjugation.
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The previous proposition shows that at any point, we are given a "generi
" ideal

whose Young diagram as des
ribed in 3.2 is just a 
olumn. Thus, we 
an think of a

n-
omplex stru
ture as a given polynomial 
urve of order n − 1 on ea
h 
otangent

spa
e (or (n− 1)-jet).

Before looking on the lo
al and global theory, we 
an easily determine the global

nature of the higher Beltrami 
oe�
ients. For this, let's see how they 
hange under

a holomorphi
 
oordinate transform z → z(w). Sin
e p = ∂
∂z

7→ dw
dz

∂
∂w

and similarly

p̄ = ∂
∂z̄

7→ dw̄
dz̄

∂
∂w̄
, we get

〈

pn,−p̄+ µ2(z, z̄)p+ ... + µn(z, z̄)p
n−1
〉

7→

〈

(
dw

dz
)n(

∂

∂w
)n,−

dw̄

dz̄

∂

∂w̄
+
dw

dz
µ2(z, z̄)

∂

∂w
+ ... + (

dw

dz
)n−1µn(z, z̄)(

∂

∂w
)n−1

〉

=

〈

(
∂

∂w
)n,−

∂

∂w̄
+
dz̄/dw̄

dz/dw
µ2(z, z̄)

∂

∂w
+ ...+

dz̄/dw̄

(dz/dw)n−1
µn(z, z̄)(

∂

∂w
)n−1

〉

Thus, we see that for m = 2, ..., n we get

µm(w, w̄) =
dz̄/dw̄

(dz/dw)m−1
µm(z, z̄).

So µm is of type (−m+1, 1), i.e. a se
tion of K−m+1⊗ K̄ where K = T ∗(1,0)Σ is the


anoni
al line bundle. For m = 2, this 
oin
ides with our observation in 2.3 on the

global nature of the Beltrami 
oe�
ient.

Now, we go to the se
ond step, the lo
al theory. In the next subse
tion, we will

explain why we have to enlarge our attention from Σ to the symple
ti
 manifold

T ∗Σ.

4.2 Higher di�eomorphisms

In the previous se
tion, we saw that the n-
omplex stru
ture in one point 
an be

seen as a polynomial 
urve of degree n − 1 in the 
omplexi�ed 
otangent spa
e or

equivalently as a 
omplex-valued polynomial fun
tion on the (real) 
otangent spa
e.

Thus, it seems 
lear that we 
annot get µ2 = ... = µn = 0 by a linear 
oordinate


hange. The best we 
an do is µ2 = 0 whi
h 
orresponds to the fa
t that the almost


omplex stru
ture 
an be trivialized at one point.

We want the higher 
omplex stru
ture to be as 
lose to the 
omplex stru
ture

as possible. In parti
ular we wish to be able to trivialize it at one point. So what

we need are polynomial transformations in the 
otangent spa
e. This 
annot be

a
hieved from a transformation on Σ alone, so we have to 
onsider the whole man-

ifold T ∗Σ whi
h 
arries a natural symple
ti
 stru
ture. Why symple
ti
 geometry?
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Be
ause any fun
tion H on a symple
ti
 manifold generates a transformation, so we

hope that this transformation will be polynomial when we 
hoose H polynomial.

So we are entering the realm of symple
ti
 geometry. Re
all that a sym-

ple
ti
 stru
ture on a manifold is a 
losed non-degenerate di�erential 2-form ω.

Darboux's theorem asserts that a symple
ti
 manifold 
an be modeled over (R2n, ω0)

where ω0 = dx1 ∧ dx2 + ... + dx2n−1 ∧ dx2n is the standard symple
ti
 form on R2n
.

The global theory of symple
ti
 stru
tures is not well-understood yet (espe
ially

there is no analog to theorem 2).

Any 
otangent bundle admits a natural symple
ti
 stru
ture 
oming from the

exterior derivative of the Liouville form. In our 
ase, the symple
ti
 form is simply

given by ω = dp ∧ dz + dp̄ ∧ dz̄. Noti
e that although written in 
omplexi�ed


oordinates, ω lives in the real 
otangent spa
e sin
e T ∗Σ = {adz + ādz̄ | a ∈ C} ⊂

T ∗CΣ.

A symple
tomorphism of a symple
ti
 manifold (M,ω) is a di�eomorphism

preserving the symple
ti
 form ω. The set of all symple
tomorphisms, denoted by

Symp(M) is an in�nite-dimensional Lie group. Its Lie algebra is given by the set of

symple
ti
 ve
tor �elds where a ve
tor �eld X is 
alled symple
ti
 if the 1-form

iXω := ω(X, .) is 
losed. If iXω = dH is exa
t, we speak of a Hamiltonian ve
tor

�eld with HamiltonianH whi
h is nothing else than a smooth fun
tion onM . Sin
e

any 
losed form is lo
ally exa
t, any symple
ti
 ve
tor �eld is lo
ally Hamiltonian.

De�nition 6. A higher di�eomorphism of a surfa
e Σ is a symple
tomorphism

of T ∗Σ preserving the zero-se
tion Σ ⊂ T ∗Σ (not ne
essarily pointwise). The set of

higher di�eomorphisms is denoted by Symp0(T
∗Σ).

We say that a higher di�eomorphism is of order n if it is generated by a sym-

ple
ti
 ve
tor �eld su
h that around ea
h point, its Hamiltonian H is a homogenous

polynomial of degree n in p and p̄.

Some explanations seem ne
essary: For order n = 1, we get the usual di�eomor-

phisms of Σ, linearly extended to T ∗Σ sin
e lo
ally, the ve
tor �eld dH is 
onstant.

In the usual situation, we have a 
oordinate z on Σ whi
h gives a linear 
oordinate

p on T ∗Σ. A higher di�eomorphism distorts this linear 
oordinate (�gure 7).

Further, a higher di�eomorphism generated by a symple
ti
 ve
tor �eld on T ∗Σ

preserves the base i� the symple
ti
 ve
tor �eld restri
ted to the zero-se
tion Σ lives

in TΣ ⊂ TT ∗Σ. Writing down this 
ondition shows that the Hamiltonian giving

lo
ally the symple
ti
 ve
tor �eld admits a Taylor development in p and p̄ only.
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Fig. 7: E�e
t of higher di�eomorphisms

Let's see how a higher di�eomorphism a
ts on the n-
omplex stru
ture. First, we

need a general statement on variations of ideals:

Proposition 8. The spa
e of in�nitesimal variations of an ideal I in a ring A is

the set of all A-module homomorhpisms from I to A/I.

Proof. Let F : I → A be an additive map su
h that F (I) is an ideal. The 
ondition

for being an ideal gives that for all a ∈ A and x ∈ I, there is a z ∈ I with

aF (x) = F (z).

For an in�nitesimal F , we 
an write F = id+εf . So we get

ax+ εaf(x) = z + εf(z).

So z = ax by taking ε = 0 and thus

af(x) = f(z) = f(ax)

whi
h shows that f is an A-module homomorphism. Conversely, any su
h morphism

gives a variation.

Sin
e we do not 
hange I when F stays in I, we have to 
onsider morphisms modulo

I.

Remark. In our 
ase, we deal with ideals of 
odimension n of C [x, y] whi
h is an

algebra so ideals are ve
tor spa
es. Variations of ve
tor spa
es of 
onstant dimension

or 
odimension are des
ribed by the tangent spa
e of a Grassmannian: Around a
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linear subspa
e L of a ve
tor spa
e V , the tangent spa
e to the Grassmannian at L

is given by all linear transformations from L to V/L.

So to 
ompute the variation of an ideal, all we need is to 
ompute the variation of

its generators modulo I. These generators are polynomial fun
tions and symple
to-

morphisms a
t on fun
tions. This gives the a
tion of higher symple
tomorphisms on

the n-
omplex stru
ture. We 
an expli
ite even further the in�nitesimal variation

by a Hamiltonian H .

Any Hamiltonian H generates a �ow on T ∗Σ by integrating its asso
iated ve
tor

�eld XH := ω(dH, .). The variation of a fun
tion f along a �ow line is given by

df

dt
= df(XH) = {H, f}

where {., .} := ∂
∂p

∧ ∂
∂z

+ ∂
∂p̄

∧ ∂
∂z̄

is the Poisson bra
ket whi
h is a 2-ve
tor. This

means that

{H, f} =
∂H

∂p

∂f

∂z
−
∂H

∂z

∂f

∂p
+
∂H

∂p̄

∂f

∂z̄
−
∂H

∂z̄

∂f

∂p̄
.

So the in�nitesimal variation of I(z) under a Hamiltonian H is given by a fun
tion

F : I → C[x, y]/I de�ned by pn 7→ {H, pn} mod I and

−p̄+µ2(z, z̄)p+ ...+µn(z, z̄)p
n−1 7→ {H,−p̄+µ2(z, z̄)p+ ...+µn(z, z̄)p

n−1} mod I

If we write out the Taylor expansion ofH in p and p̄, we see that only terms of degree

at most n−1 will 
ount, so we 
an assume H to be a sum of higher di�eomorphisms

of order at most n− 1.

In the next se
tion, we will see how to 
ompute this variation and that higher

di�eomorphisms 
an trivialize lo
ally the n-
omplex stru
ture.

Remark. It seems that higher di�eomorphisms have a strong link to linear di�er-

ential operators on manifolds: usual di�eomorphisms isotopi
 to the identity are

generated by ve
tor �elds whi
h are nothing else than di�erential operators of order

1. It seems that higher di�eomorphisms isotopi
 to the identity are generated by lin-

ear di�erential operators sin
e both symple
ti
 ve
tor �elds and di�erential operators

are given lo
ally by a polynomial.

4.3 Lo
al theory

In this subse
tion, we are in an open neighborhood of 0 in C. We will prove that

a higher 
omplex stru
ture 
an lo
ally be trivialized by a higher di�eomorphism,

whi
h means that µ2(z, z̄) = ... = µn(z, z̄) = 0 in a neighborhood of 0. Before doing
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so, we have to 
ompute the variation of the higher 
omplex stru
ture by a higher

di�eomorphism.

4.3.1 In�nitesimal variation

Let's start with a small 
ase before giving the general 
omputation. For n = 3, we

have an ideal of the form

I(z) =
〈

p3,−p̄+ µ(z, z̄)p+ ρ(z, z̄)p2
〉

where µ = µ2 is the usual Beltrami 
oe�
ient and ρ = µ3. Sin
e we work lo
ally,

the in�nitesimal variation is generated by a real Hamiltonian H of degree at most

2 in p and p̄. We distinguish two 
ases:

First 
ase: H(z, z̄, p, p̄) = v(z, z̄)p+ v̄(z, z̄)p̄ is of degree 1

As we have seen at the end of the previous subse
tion, the in�nitesimal variation of

I(z) is determined by {H,−p̄ + µp+ ρp2} mod I(z). We have

{vp+ v̄p̄,−p̄+ µp+ ρp2} = −(µ∂v̄ − ∂̄v̄)p̄+ (v∂µ − µ∂v + v̄∂̄µ+ ∂̄v)p

+(v∂ρ − 2ρ∂v + v̄∂̄ρ)p2 − 2ρ∂v̄pp̄

The appearan
e of the term pp̄ seems at �rst annoying but modulo I, we have

pp̄ = µp2. Now, integrating the Hamiltonian up to time ε in order to 
ompute the

variation of µ and ρ, we get working modulo I that

−p̄ + µp+ ρp2 7→ −(1 + ε(µ∂v̄ − ∂̄v̄))p̄+ (µ+ ε(v∂µ− µ∂v + v̄∂̄µ+ ∂̄v))p

+(ρ+ ε(v∂ρ− 2ρ∂v + v̄∂̄ρ− 2µρ∂v̄))p2

∝ −p̄+ (µ+ ε(v∂µ− µ∂v + v̄∂̄µ+ ∂̄v − µ2∂v̄ + µ∂̄v̄)p

+(ρ+ ε(v∂ρ− 2ρ∂v + v̄∂̄ρ− 3µρ∂v̄ + ρ∂̄v̄)p2

Thus, noti
ing a fa
torization we get

δµ = (∂̄ − µ∂ + ∂µ)(v + µv̄)

as we already 
omputed in the remark at the end of subse
tion 2.4 (equation (4))

and

δρ = v∂ρ+ v̄∂̄ρ+ ρ∂̄v̄ − 2ρ∂v − 3µρ∂v̄

We see that for a usual di�eomorphism (i.e. of order 1), we get the usual variation

of the 
omplex stru
ture and around ρ = 0, we have δρ = 0 so it remains zero.
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Se
ond 
ase: H = wp2 + w′pp̄+ w̄p̄2 is of degree 2 with w′ ∈ R

We pro
eed exa
tly in the same manner as before. First we 
ompute

{wp2 + w′pp̄+ w̄p̄2,−p̄+ µp+ ρp2}

whi
h equals

(2w∂µ− µ∂w + w′∂̄µ+ ∂̄w)p2 + (w′∂µ − µ∂w′ + 2w̄∂̄µ+ ∂̄w′)pp̄+ (∂̄w̄ − µ∂w̄)p̄2

Modulo I, we have pp̄ = µp2 and p̄2 = µ2p2. We then get dire
tly δρ sin
e degree 1

terms are not a�e
ted by H :

δρ = (2w∂µ− µ∂w+w′∂̄µ+ ∂̄w) + µ(w′∂µ− µ∂w′ + 2w̄∂̄µ+ ∂̄w′) + µ2(∂̄w̄− µ∂w̄)

whi
h beautifully fa
torizes to

δρ = (∂̄ − µ∂ + 2∂µ)(w + µw′ + µ2w̄) (11)

A Hamiltonian of degree at least 3 does not 
hange µ and ρ. So we 
overed all 
ases.

We see in that example the importan
e to pass to higher di�eomorphisms: with

a di�eomorphism, we 
annot 
hange ρ as we want but with a Hamiltonian of degree

2 we 
an. Around µ = 0 for example, we get

δρ = ∂̄w

whi
h is quite similar to the formula δµ = ∂̄v for a Hamiltonian of degree 1.

We turn now to the general 
ase. Equations (4) and (11) for the variations of

µ = µ2 and ρ = µ3 suggest the following general formula:

Proposition 9. The variation of µk+1 under a Hamiltonian of degree k given by

H = wkp
k + wk−1p

k−1p̄+ ...+ w0p̄
k
with w̄l = wk−l for all l is given by

δµk+1 = (∂̄ − µ2∂ + k∂µ2)(wk + µ2wk−1 + µ2
2wk−2...+ µk

2w0) (12)

In addition, around (µ2, ..., µn) = (0, ..., 0), we get δµl = 0 for l 6= k + 1.

Proof. There is no mystery: we repeat the same 
omputation as for n = 3 in the

general 
ase. The hurried reader 
an skip these 
omputations.

A simpli�
ation 
omes from the fa
t that we are only interested in the variation of

µk for the moment and that only terms of order at least k are modi�ed. Hen
e, we


an 
on
entrate on terms of degree exa
tly k. With this and by noting w−1 = 0, we
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�rst 
ompute

{wkp
k + wk−1p

k−1p̄ + ...+ w0p̄
k,−p̄+ µ2p+ ... + µnp

n−1} =

k
∑

m=0

pk−mp̄m((k −m)wk−m∂µ2 − µ2∂wk−m + (m+ 1)wk−m−1∂̄µ2 + ∂̄wk−m)

+ higher terms

Modulo I, we have pip̄j = µjpi+j + higher terms for all i and j. Integrating the

Hamiltonian up to time ε gives modulo higher terms that to the fun
tion −p̄+µ2p+

...+ µnp
n−1

is added a term

ε

k
∑

m=0

µm
2 ((k −m)wk−m∂µ2 − µ2∂wk−m + (m+ 1)wk−m−1∂̄µ2 + ∂̄wk−m)p

k

Thus, noti
ing a fa
torization, we get

δµk+1 =
k
∑

m=0

µm
2 ((k −m)wk−m∂µ2 − µ2∂wk−m + (m+ 1)wk−m−1∂̄µ2 + ∂̄wk−m)

=(∂̄ − µ2∂ + k∂µ2)(wk + µ2wk−1 + µ2
2wk−2 + ...+ µk

2w0)

whi
h gives equation (12).

Around µ2 = ... = µn = 0, we get easily

−p̄ 7→ − p̄+ ε

k
∑

m=0

pk−mp̄m∂̄wk−m

=− p̄+ εpk∂̄wk

to order 1. Hen
e, δµl = 0 for l 6= k + 1 around µ2 = ... = µn = 0.

Note that around µ2 = 0, the higher 
omplex stru
ture is preserved by any holo-

morphi
 higher di�eomorphism. So the group whi
h lo
ally preserves the stru
ture

is in�nite-dimensional.

4.3.2 Lo
al triviality

We are now ready to give the lo
al theory of the higher 
omplex stru
ture:

Theorem 8. The n-
omplex stru
ture 
an be lo
ally trivialized, i.e. there is a higher

di�eomorphism whi
h sends the stru
ture to (µ2(z, z̄), ..., µn(z, z̄)) = (0, ..., 0) for all

small z.
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Proof. The proof will be by indu
tion. For n = 2, we already know the result

whi
h is Gauss' theorem on the existen
e of isothermal 
oordinates (theorem 1). So

suppose that the statement is true for n ≥ 2 and we will show it for n+ 1.

By indu
tion hypothesis, there is a higher di�eomorphism whi
h makes µ2(z) =

... = µn(z) = 0 for all z near the origin. We will 
onstru
t a higher di�eomorphism

generated by a Hamiltonian of degree n giving µn+1(z) = 0 for all z near 0. Sin
e a

Hamiltonian of degree n does not a�e
t the µk with k ≤ n (see previous proposition),

we are done.

Let's try a Hamiltonian of the form

H(z, z̄, p, p̄) = wn(z, z̄, p, p̄)p
n + w̄n(z, z̄, p, p̄)p̄

n

generating a �ow φt. We denote by µt
n+1(z, z̄) the image of µn+1(z, z̄) by φt (note

that φt �xes the zero-se
tion pointwise). The variation formula (12) for µ2 = 0 then

reads

d

dt
µt
n+1(z, z̄) = ∂̄wn(z, z̄, 0, 0)

Thus, the variation does not depend on time. We wish to have

d

dt
(µt

n+1(z, z̄)) = −µt=0
n+1(z, z̄).

So we have to solve

∂̄wn(z, z̄, 0, 0) = −µ0
n+1(z, z̄)

The inversion of the Cau
hy-Riemann operator ∂̄ is well-known. We denote its

inverse by T . Expli
itly, we have

Tf(z) =
1

2πi

∫

C

f(ζ)

ζ − z
dζ ∧ dζ̄

for any square-integrable fun
tion f .

Therefore, on the zero-se
tion we set wn(z, z̄, 0, 0) = −Tµ0
n+1(z, z̄) (sin
e µn+1 is

smooth, it is lo
ally square-integrable). To de�ne it everywhere, we 
hoose a bump

fun
tion β, in our 
ase a fun
tion on C2
whi
h is 1 in a neighborhood of the origin

and 0 outside a bigger neighborhood of the origin, and we put

wn(z, z̄, p, p̄) = −β(p, p̄)Tµ0
n+1(z, z̄).

So the Hamiltonian is de�ned everywhere and gives a 
ompa
tly supported ve
tor
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�eld whi
h therefore 
an be integrated for all times. We then get

µt
n+1(z, z̄) = (1− t)µ0

n+1(z, z̄)

Therefore, at time t = 1, µn+1 vanishes everywhere.

Remark. One might wonder how it is possible to 
hange µk(z, z̄) by a higher dif-

feomorphism whi
h �xes the zero-se
tion pointwise. In fa
t, the higher Beltrami


oe�
ients do not only depend on z and z̄ but also on the "non-linear torsion of p".

That means the following: the 
hart z gives a linear 
oordinate plin on the 
otangent

spa
e. The µk also depend on the derivatives of p (and p̄) with respe
t to plin (and

p̄lin).

4.4 Geometri
 higher Tei
hmüller spa
e

In this �nal subse
tion, we will dis
uss the global theory of the n-
omplex stru
ture.

We will de�ne a generalization of the Tei
hmüller spa
e, show that it is a 
ontra
tible

ball of dimension (n2 − 1)(g − 1), where g denotes the genus of the surfa
e, and

des
ribe its tangent and 
otangent spa
e.

De�nition 7. The spa
e of all 
ompatible n-
omplex stru
tures modulo higher dif-

feomorphisms isotopi
 to the identity is 
alled the geometri
 higher Tei
hmüller

spa
e and denoted by T̂ n
Σ .

Sin
e a higher di�eomorphism of order 1 is a usual di�eomorphism, we re
over for

n = 2 the usual Tei
hmüller spa
e:

T̂ 2
Σ = TΣ.

Our main result of the global theory is

Theorem 9. For a surfa
e Σ of genus g ≥ 2 the geometri
 higher Tei
hmüller spa
e

T̂ n
Σ is a 
ontra
tible manifold of 
omplex dimension (n2 − 1)(g− 1). In addition, its


otangent spa
e at any point µ = (µ2, ..., µn) is given by

T ∗
µ T̂

n
Σ =

n
⊕

m=2

H0(Σ, Km)

Proof. Contra
tibility is quite easy as for the 
omplex stru
ture: given a n-
omplex

stru
ture (µ2, ..., µn) with |µ2| < 1, we 
an retra
t it via (1−t)(µ2, ..., µn) to (0, ..., 0).
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To see that it is a manifold, we will examine the in�nitesimal variation around

any point. This will also give a des
ription of the tangent and 
otangent spa
e, as

for the 
omplex stru
ture. By de�nition, we have

T̂ n
Σ = {(µ2, ..., µn) | µm ∈ K−m+1 ⊗ K̄ ∀m and |µ2| < 1}/ Symp0(T

∗Σ)

The in�nitesimal variation around µ = (µ2, ..., µn) is then given by

TµT̂
n
Σ = {(δµ2, ..., δµn) | δµm ∈ K−m+1 ⊗ K̄ ∀m}/ΓSymp0(T

∗Σ)

where ΓSymp0(T
∗Σ) denotes the symple
ti
 ve
tor �elds on T ∗Σ tangent to the zero-

se
tion.

In the previous subse
tion, we have seen that every n-
omplex stru
ture is lo
ally

trivializable. So there is an atlas in whi
h (µ2, ..., µn) = µ = 0. In addition we have


omputed the a
tion of a symple
ti
 ve
tor �eld on the n-
omplex stru
ture around

µ = 0. Lo
ally, we 
an de
ompose its Hamiltonian into homogenous parts of degree

1 to n− 1. All higher terms do not a�e
t the n-
omplex stru
ture. By proposition

6 (with µ2 = 0), we get

TµT̂
n
Σ = {(δµ2, ..., δµn)}/(∂̄w1, ..., ∂̄wn−1)

where wm is a se
tion of Km
. Thus, the tangent spa
e splits into parts

TµT̂
n
Σ = {δµ2 ∈ K̄ ⊗K−1}/∂̄w1 ⊕ ...⊕ {δµn ∈ K−n+1 ⊗ K̄}/∂̄wn−1

To 
ompute the 
otangent spa
e, we pro
eed in the same way as for the 
omplex

stru
ture. We get

({δµm}/∂̄wm−1)
∗ =Ann(∂̄wm−1)

={tm ∈ Km | ∫ tm∂̄wm−1 = 0 ∀wm−1 ∈ Km−1}

={tm ∈ Km | ∫ ∂̄tmwm−1 = 0 ∀wm−1 ∈ Km−1}

={tm ∈ Km | ∂̄tm = 0}

=H0(Σ, Km)

Therefore

T ∗
µ T̂

n
Σ =

n
⊕

m=2

H0(Σ, Km)

Now, we 
an 
ompute the dimension of the geometri
 higher Tei
hmüller spa
e
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using the Riemann-Ro
h formula and Serre duality:

dimH0(Σ, Km) = degKm − g + 1 + dimH0(Σ, K−m+1).

First, we have degKm = m degK = m(2g − 2). For the term dimH0(Σ, K−m+1),

whi
h des
ribes the global holomorphi
 se
tions of K−m+1
, we have for g ≥ 2 that

degK−m+1 = (1 −m)(2g − 2) < 0. Sin
e the degree is the number of zeros minus

the number of poles for any meromorphi
 se
tion, there 
annot be any non-zero

holomorphi
 se
tion. Hen
e, dimH0(Σ, K−m+1) = 0 and

dimH0(Σ, Km) = (2m− 1)(g − 1).

Therefore

dim T̂ n
Σ = dimT ∗

µ T̂
n
Σ =

n
∑

m=2

dimH0(Km) =

n
∑

m=2

(2m− 1)(g − 1) = (n2 − 1)(g − 1)

Remark. We see that as in the 
ase for the 
omplex stru
ture, the tangent spa
e

to the geometri
 higher Tei
hmüller spa
e is the dire
t sum of the 
okernels of the

maps

∂̄ : Ω0(Σ, Km) → Ω0,1(Σ, Km).

The proof of the previous theorem is not very di�
ult on
e the 
omputations

above are done. Even these are straightforward. The same theorem holds also for the

(algebrai
) higher Tei
hmüller spa
e T n
Σ dis
ussed in se
tion 2.5 whi
h is 
onsidered

as a di�
ult theorem (see [16℄). So if we 
ould prove the equivalen
e between the

geometri
 and the algebrai
 higher Tei
hmüller spa
e, these properties would get an

easier proof. Furthermore, if both 
on
epts are isomorphi
, there would be a natural

a
tion of the mapping 
lass group of the surfa
e on T n
Σ . Also there would be some

hope of �nding a hyperkähler stru
ture in the neighborhood of the zero-se
tion of

T ∗T n
Σ by the hyperkähler quotient 
onstru
tion des
ribed in [17℄. In parti
ular, this

would give a Kähler stru
ture on T n
Σ .
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